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CHAPTER 1:  GENERAL INTRODUCTION 

1.1 Dissertation Organization  

This dissertation investigates the role of the inferior olive in classical conditioning of 

the eyeblink reflex.  The dissertation is written in the alternative format, which contains a 

general introduction, six research papers, general conclusions, and acknowledgements.  

 Chapter 1 provides a general introduction to eyeblink classical conditioning, the 

research hypotheses, the background and significance of the paradigm, and also a literature 

review.  In addition, it delivers a detailed description of the training paradigm, the circuits 

that mediate eyeblink conditioning, the controversy surrounding the function of the IO, the 

effects of blocking IO US input, and the functional role of tonic interactions in eyeblink 

conditioning circuits.      

Chapters 2-7 are organized in journal paper format for six manuscripts.  Three of the 

manuscripts are already published, one in which I am the first-author and two others that I 

co-authored; two manuscripts are currently in review; and the last one describes new 

preliminary data.    

Ch. 2:  Carrel, A.J., Zbarska, S., Zenitsky, G.D., and Bracha, V. (2012). A trigeminal 

conditioned stimulus yields fast acquisition of cerebellum-dependent conditioned eyeblinks. 

Behavioural Brain Research, 226, 189-96.  

Ch 3:  Carrel, A.J., Zenitsky, G.D., Bloedel, J.R., and Bracha, V. Blocking glutamate-

mediated inferior olivary signals abolishes expression of conditioned eyeblinks but does not 

prevent their acquisition. A paper prepared to be submitted to the Journal of Neuroscience. 
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Ch. 4:  Carrel, A.J. Zenitsky, G.D., and Bracha, V. Effects of blocking glutamate 

neurotransmission in the inferior olive on eyeblink conditioning-related inferior olivary 

signals. 

Ch. 5:  Bracha, V., Zbarska, S., Parker, K., Carrel, A., Zenitsky, G., and Bloedel, J. R. 

(2009). The cerebellum and eye-blink conditioning: learning versus network performance 

hypotheses. Neuroscience, 162(3), 787-96. 

Ch. 6:  Bracha, V., and Carrel, A.J. (2012). The role of IN neuronal activity in the 

control of reflexive and voluntary movements. Cerebellum (in press, part of multi-author 

consensus paper titled “What is encoded by the interpositus nucleus? A consensus paper”). 

Ch. 7:  Parker, K.L., Zbarska, S., Carrel, A.J., and Bracha, V. (2009). Blocking 

GABAA neurotransmission in the interposed nuclei: effects on conditioned and 

unconditioned eyeblinks. Brain Research, 1292, 25-37. 

Chapter 8 contains general conclusions and recommendations for future directions 

with this research.  References are at the end of each chapter.  

1.2 Introduction 

 Classical conditioning of the eyeblink reflex is a type of motor learning known to be 

dependent on the intermediate cerebellum.  The cerebellum receives information about the 

conditioned and unconditioned stimuli (CS, US) via mossy fibers and climbing fibers, 

respectively.  The mossy fiber pathway arises from the pontine nuclei while the climbing 

fiber pathway is derived from axons of neurons located in the inferior olive (IO).  It has been 

proposed that these pathways are both necessary and sufficient to support cerebellum-

dependent CR acquisition and expression (Thompson, 1986).     
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Although the IO has been intensely investigated, its specific role in eyeblink 

conditioning remains elusive.  The cerebellar learning hypothesis states that the IO provides 

the cerebellum with a “teaching signal” (Marr, 1969; Albus, 1971).  Since the IO is the sole 

source of climbing fiber input to the cerebellum and it provides the cerebellum with 

information about the US, this input is thought to induce structural and physiological changes 

within the cerebellum that mediates the cerebellum-dependent CR.  If this hypothesis is true, 

blocking IO US signals should result in the gradual loss of previously learned CRs (i.e., 

extinction) and failure to acquire new CRs.  Some studies that examined this hypothesis 

show that preventing IO US signals from reaching the cerebellum resulted in what appears to 

be extinction (McCormick et al., 1985; Mauk et al., 1986; Medina et al., 2002) and failure to 

learn new CRs (Welsh and Harvey, 1998).   

Conversely, other IO lesion and inactivation studies testing the expression of 

previously learned CRs have shown immediate abolition instead of their gradual loss (Yeo et 

al., 1986; Zbarska et al., 2007, 2008).  Single-unit neuronal recordings in the IN show that 

blocking glutamate neurotransmission through the IO not only abolishes CRs but it also 

silences neurons in the IN (Zbarska et al., 2007; 2008).  These data indicate that IO inputs to 

the cerebellum have a broader function than just providing it with a teaching signal for 

associative learning.  In fact, it appears that IO activity has a major impact on the overall 

tonic activity within the neural network.  Thus, it appears that previous studies designed to 

test the role of the IO in CR acquisition failed to adequately test it because the treatments 

they used induced a widespread tonic malfunction within the entire network. 
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Based on this knowledge, the objective of this dissertation was to investigate the role 

of IO US signals in the acquisition of conditioned eyeblinks.  However, before we could 

begin this task, we first needed to develop a methodology for assessing CR acquisition 

during pharmacological intervention.  Long acquisition experiments spanning many days 

require multiple pharmacological injections.  The more injections that are required, the more 

likely that one of them will fail and invalidate our acquisition experiment.  To limit the 

likelihood of an injection failure, we needed to find a way to reduce the number of days 

required for CR acquisition.  We succeeded in increasing the speed of CR acquisition using a 

different CS, specifically a mild airpuff to the ipsilateral vibrissal pad (vCS) (see Chapter 2).   

With this new methodology, we commenced our investigation of inferior olivary 

signaling during CR acquisition.  We obtained some very exciting results showing that 

blocking glutamate signaling in the IO during acquisition to the vCS does not block learning 

(see Chapter 3).  Lastly, we needed to ensure that our IO injections were indeed blocking US 

signals to the cerebellum.  The best evidence would come from recording neuronal activity 

related to IO firing.  Unfortunately, recording activity directly in the IO is a difficult task 

because it is located in the most ventral area of the medulla oblongata, and implanting 

recording electrodes in the IO is risky and thus not advised.  Fortunately, when neurons in the 

IO fire action potentials, their activity induces a characteristic electrophysiological signal in 

the cerebellar cortex called a complex spike (Eccles et al., 1966).  This feature allows us to 

record IO activity directly in the cerebellar cortex.  Therefore, we recorded complex spike 

activity in the eyeblink-related region of the cerebellar cortex (i.e., lobule HVI) before and 

after glutamate antagonist injections in the IO.  We found that our IO injections do block IO-
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related complex spikes in the cerebellar cortex (see Chapter 4).  Overall, these data indicate 

that IO signals may not be required for CR acquisition and the “teaching signal” can possibly 

be delivered to the cerebellum via an alternate route other than through the climbing fiber 

pathway.                

1.3 Research Hypotheses 

I.  Determine whether a vibrissal conditioned stimulus (vCS) accelerates CR acquisition 

and whether vCS-evoked CRs are cerebellum-dependent. 

The overall goal of this dissertation was to test a primary tenant of the cerebellar 

learning hypothesis, specifically that the IO  provides the cerebellum with information about 

the US signal.  Determining the role of the IO in CR acquisition requires a drug injection in 

the IO before each training session.  Since repeated intracranial microinjections have a 

relatively high rate of failure, the success of this project would be significantly increased if 

the CR acquisition period could be shortened and the number of injections reduced. 

We hypothesized that a mild vCS would yield much faster CR acquisition than the 

traditional auditory or visual CS.  Moreover, for the vCS to be a viable CS for CR 

acquisition studies, it must be cerebellar-dependent, similar to CRs evoked by other CS 

modalities.  It is known that manipulations of IN tonic activity using cerebellum-dependent 

CS modalities produce characteristic behavioral effects.  Specifically, IN injections of 

muscimol produce CR abolition while picrotoxin (PTX) produces short-latency responses.  

We were able to confirm our hypothesis and also show that vCS-evoked CRs were 

cerebellum-dependent as described by experiments done in Chapter 2 (Carrel et al., 2012).   
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II.  Determine the role of inferior olivary glutamatergic signals in the acquisition of 

conditioned eyeblinks.  

Most present concepts of eyeblink conditioning presume that learning requires plastic 

changes in the cerebellum that are induced by inferior olivary US signals.  Previous studies 

that tested the IO’s hypothetical function were inconclusive because they could not exclude 

that the effects of blocking IO signals on learning were caused by a non-specific tonic 

malfunction of cerebellar circuits. 

We developed an innovative approach to block glutamate-mediated IO US signals 

with the fast glutamate receptor antagonist DGG, while simultaneously compensating for 

tonic side-effects of the IO signal-blocking treatment by disinhibiting the IN using injections 

of the GABA-A antagonist PTX.  Before deploying this approach, we tested effects of simply 

blocking IO glutamate on CR acquisition without otherwise compensating for tonic side-

effects of this treatment.  We hypothesized that IO US signals are required for CR 

acquisition, and thus, blocking these signals by injecting the IO with a glutamate receptor 

antagonist will prevent learning.  Unexpectedly, these experiments led to rejecting our 

hypothesis and they strongly indicated that, contrary to the cerebellar learning hypothesis, IO 

US signals are not required for CR acquisition (Chapter 3).   

III.  Determine whether US signals are actually blocked by the IO DGG injection 

protocol used during CR acquisition experiments.    

Interpreting experiments that addressed research hypothesis II depends on whether 

injecting the IO with DGG blocks all IO-mediated US signals to the cerebellum.  Thus, we 

initiated studies designed to verify this assumption.  Proving or falsifying the putative 
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teaching role of IO US signals is possible only if single-unit recording in the cerebellar 

cortex demonstrates that IO DGG blocks all US-related complex spikes of Purkinje cells.  We 

hypothesized that IO DGG injections would block IO US signals as evidenced by a complete 

suppression of vCS- and US-related complex spikes in Purkinje cells.  Results of this pilot 

experiment seem to confirm our hypothesis (Chapter 4).   

IV.  Determine whether the controversy about effects of blocking GABAA 

neurotransmission in interposed nuclei on CR expression could be explained by a drug 

dose-dependent excitability of interposed nuclear neurons.  

 Before choosing to examine the role of the IO in CR acquisition as the main subject 

of my PhD studies, I participated in the investigation of the IN’s contribution to CR 

expression.  One of the glaring controversies in the field of eyeblink conditioning arises from 

contradictory results of disconnecting cerebellar cortical projections to the IN on CR 

expression.  One set of published studies suggested that blocking these GABA-ergic 

projections abolished CRs, while another set of studies claimed that blocking GABA 

neurotransmission in the IN shortens CR latencies.  Since these results lead to fundamentally 

different interpretations of IN function, we re-examined this issue. 

We hypothesized that in principle these two sets of results could be reconciled by 

acknowledging changes of tonic activity of IN neurons.  If this were the case, we predicted 

that specific outcomes of blocking cortical projections to the IN should depend on the extent 

of the GABA-A receptor block.  We confirmed this hypothesis in experiments reported in 

Chapter 7.  Since this area of research is only tangentially related to the main subject of this 
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thesis, Chapter 7 is self-contained and the background for that study is not included in this 

Introduction.    

1.4 Background and Significance 

Classical conditioning of the eyeblink reflex is one of the best characterized models 

of associative/motor learning in mammals.  The circuitry involved in this form of learning is 

well-delineated, and ongoing research focuses on resolving how processing of information in 

eyeblink conditioning circuits supports learning.  It is expected that results of these efforts 

will lead to greater knowledge about the mechanisms of learning, memory, and the function 

of the cerebellum.  Ultimately, results of this research will help in designing better treatments 

of human memory and motor control deficits associated with brain injury and pathology.   

Although this model has been extensively investigated, the role of the IO in eyeblink 

conditioning is not well understood.  Previous studies of IO signaling during eyeblink 

conditioning have been inconclusive because traditional methods of blocking IO task-related 

signals induce a tonic malfunction in the cerebellum, which is manifested by the complete 

suppression of spontaneous neuronal activity in the IN (for our review of this problem see 

Chapter 5).  Through an innovative approach, our lab has discovered a highly promising way 

to compensate for this IO-induced tonic malfunction of the cerebellum that will allow us to 

conclusively test the role of the IO in acquiring CRs.  

The following part of this section introduces the eyeblink conditioning paradigm and 

summarizes the knowledge pertinent to this project. 
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1.4.1 Classical conditioning of the eyeblink reflex 

Delay classical conditioning of the eyeblink reflex entails training rabbits in an 

associative learning paradigm using two different stimuli.  At the start of training, rabbits are 

presented with a biologically neutral conditioned stimulus (CS), such as a tone, that is 

followed by (i.e., paired with) and co-terminates with an aversive unconditioned stimulus 

(US).  The US elicits an innate, reflexive, unconditioned response (UR) present in many 

mammalian species that causes contraction of the eyelids and covering of the cornea by the 

third eyelid, or nictitating membrane.  After the presentation of many paired CS-US trials, 

the rabbit begins to exhibit a learned conditioned eyeblink response (CR) in anticipation of 

the upcoming US (Fig. 1).  This adaptive response results in the peak of the CR being timed 

to coincide with the onset of the US (Smith, 1968, Coleman, 1971).   

CR (trained animal)

CS

US

350ms

100ms

UR (naïve animal)

CR UR

UR

450ms

CS US
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Figure 1.  Schematic of the delay classical eyeblink conditioning paradigm.  CS denotes 

onset of a 450-ms conditioned stimulus that co-terminates with a 100-ms unconditioned 

stimulus (US).  Initially, naïve rabbits only exhibit the unconditioned reflex (UR).  After 

repeated, paired CS-US presentations they exhibit conditioned responses (CRs). 

 

Before we could begin testing our hypothesis regarding the IO and CR acquisition, 

we needed to overcome one technical barrier in our experiment.  This barrier is the rate of 

acquisition using common CS modalities.  The most commonly used CS modalities (auditory 

and visual) generally produce asymptotic learning curves after four to six training days 

(Clark et al., 1992; Krupa & Thompson, 1997; Welsh & Harvey, 1998; Gruart et al., 2000; 

Chen & Steinmetz, 2000; Attwell et al., 2001; Nilaweera et al., 2006; Kellet et al., 2010).  

Such slow learning would likely have limited practical significance under natural conditions.  

The relatively slow rate of eyeblink conditioning has implications not only for a rabbit’s 

fitness, but also for experimenters.  A faster learning rate would be highly desirable, 

especially in studies designed to interfere with learning by using repeated drug 

microinjections into specific parts of eyeblink circuits.  Since failure of a single 

microinjection would negatively affect experiments requiring repetitive treatments, 

shortening the number of training sessions required for CR acquisition would significantly 

improve the experimental design.   

We hypothesized that slow CR acquisition in rabbits could be accelerated with a 

different CS modality.  Under natural conditions, the eye of the rabbit likely encounters 

harmful objects during locomotion through a complex environment.  A potentially effective 
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“natural” CS could be derived from the vibrissal somatosensory input.  Rabbits are endowed 

with an elaborate vibrissal system and the long and far-projecting whiskers represent an 

excellent early-warning system for detecting objects approaching their eyes.  The vibrissal 

system in rabbits is very sensitive and its stimulation can elicit reflexive alpha eyeblink 

responses (Schreurs et al., 1986).  Importantly, previous studies have demonstrated that 

stimulation of mystacial vibrissae could be used in eyeblink conditioning (Schreurs et al., 

1986; Das et al., 2001; Troncoso et al., 2004; Leal-Campanario et al., 2006).  As described in 

the Chapter 2, we successfully resolved this issue. 

1.4.2 Circuits essential for classical conditioning of the eyeblink response 

Many investigators in recent years have been instrumental in determining the relevant 

circuitry involved in eyeblink conditioning and CR expression (for reviews see (Bracha and 

Bloedel, 1996, Mauk and Donegan, 1997, Christian and Thompson, 2003, Thompson and 

Steinmetz, 2009)).  The general consensus is that delay eyeblink conditioning is controlled 

by a reflexive brainstem circuit with the intermediate cerebellar circuitry superimposed on 

top of the UR reflex circuit (Fig. 2).  Although all structures shown in Figure 2 have been 

shown to be necessary for acquisition and maintenance of CRs, the intermediate cerebellum 

is thought to contain the sites for plasticity that harbor the “memory trace” for CR production 

(Thompson, 1986, Bracha and Bloedel, 1996, Attwell et al., 2002a, Ohyama et al., 2002, 

Christian and Thompson, 2003, Ohyama et al., 2006, Bracha et al., 2009). 

According to the prominent hypothesis in the field, the “cerebellar learning 

hypothesis”, information about the CS is sent to the pontine nuclei, which then send the 

information via mossy fibers to the cerebellar cortical Purkinje cells and through mossy fiber 
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collaterals to the interposed nuclei (IN).  The sensory signals encoding the US are detected 

by the spinal trigeminal nucleus, which then sends this information to the IO.  The IO, which 

is the sole source of climbing fiber projections to the cerebellum, relays US information to 

the cerebellar cortex and via its climbing fiber collaterals, to the IN.  The heterosynaptic 

interaction of the two afferent inputs in the cerebellum is thought to cause a cascade of local 

cellular changes that result in the Purkinje and nuclear neurons altering their response 

patterns to the mossy fiber CS information.  This change in responsiveness drives the nuclear 

“CR motor command,” producing CRs.  These cerebellar plastic changes have been proposed 

to be both “necessary and sufficient” for classical eyeblink conditioning (Thompson, 1986). 

1.4.3 The controversy regarding the role of the inferior olive in acquisition and 

expression of conditioned eyeblinks  

The role of the IO in eyeblink conditioning has been the subject of much debate over 

the last quarter century.  Elucidating its physiological function in associative and cerebellar 

motor learning is pivotal for understanding neuronal network operations during CR 

acquisition and expression.  The IO is a large nucleus located in the ventral medulla just 

caudal to the pons.  It can be functionally subdivided into the dorsal accessory olive (DAO), 

the medial accessory olive, the principal olive, and other subnuclei, such as the dorsal cap of 

Kooy and the ventrolateral outgrowth (De Zeeuw et al., 1998).  

The DAO is the anatomical division that receives most of the attention in studies of 

eyeblink conditioning because it is thought to relay information about peri-orbital stimulation 

to the eyeblink-related areas of the cerebellum (Yeo et al, 1985).  The axons from neurons in 

the IO that project to the cerebellum are called climbing fibers.  The IO projects to and 
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synapses with parasagittally-oriented strips of Purkinje cells in the contralateral cerebellar 

cortex.  These climbing fiber projections also give off collaterals that innervate the 

IN
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Figure 2.  A schematic of intermediate cerebellum-related circuits controlling eyeblink CR 

acquisition and expression.  CS – conditioned stimulus input; US – unconditioned stimulus.  

Colored box represents intermediate cerebellum  (-) inhibitory GABAergic projections; (+) 

excitatory glutamatergic projections. 
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cerebellar nuclei within the same zone as the Purkinje cells.  The specific IO input, together 

with the strip of Purkinje cells and accompanying cerebellar nuclei it innervates, form what is 

called the “cerebellar module” (Ruigrok, 2011).  The cerebellar nuclei then project back to 

that specific area in the IO, completing the topographically organized olivo-cerebellar-

olivary loop (Bengtsson & Hesslow, 2006). 

This highly organized anatomy partly helped to formulate the original concepts 

proposed by Marr (1969) and Albus (1971) for the cerebellar learning hypothesis.  According 

to the cerebellar learning hypothesis as it applies to eyeblink conditioning, information about 

the CS and US reaches the cerebellum via two separate routes.  As can be seen in Figure 2, 

when using an auditory CS, the signal is transmitted by mossy fibers that arise from the 

pontine nuclei, while information about the US comes from climbing fibers that originate in 

the IO.  The CS and US information converge on cortical Purkinje cells and cerebellar 

nuclear cells.  The heterosynaptic interaction that occurs at these two sites is thought to 

activate cellular mechanisms that induce plastic changes in these two areas causing the 

cerebellum to become more responsive to CS input.  This increase in responsiveness is 

hypothesized to drive the cerebellar motor command responsible for generation of the CR.   

The plastic changes in the cerebellum that drive CR expression are thought to be 

induced by the discharge of neurons in the IO.  The cerebellar learning hypothesis posits that 

the IO supplies the cerebellum with a “teaching signal.”  A seemingly logical way to test this 

hypothesis would be to block these IO teaching signals from reaching the cerebellum.  If the 

cerebellar learning hypothesis is true, then blocking these sensory signals in well-trained 

animals would be similar to turning off the US, which should result in extinction of 
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previously learned CRs.  Moreover, blocking these IO US signals in naïve animals should 

prevent acquisition of new CRs. 

 Studies examining the role of the IO in CR expression have produced two competing 

results.  First, as predicted by the cerebellar learning hypothesis, some researchers have 

shown that lesioning the IO does indeed produce CR extinction (McCormick et al., 1985).  

Conversely, another group showed not the gradual disappearance of CRs but their immediate 

abolition (Yeo et al., 1986).  Similar to IO lesions, which block all IO activity from reaching 

the cerebellum, using injections of lidocaine to inactivate IO neurons showed immediate 

abolition of CR expression (Welsh & Harvey, 1998).  Although these studies produced 

inconsistent results on CR expression, they all showed a failure to acquire new CRs after 

blocking IO US inputs.  In addition, another study testing acquisition following IO NMDA 

lesions also showed no acquisition of CRs (Mintz et al., 1994).    

The problem with the above studies is that silencing the IO, via lesions or 

inactivations, not only blocks IO task-related signals but also causes a severe cerebellar tonic 

malfunction (Colin et al., 1980; Montarolo et al., 1982; Batini et al., 1985).  This IO 

manipulation-induced tonic malfunction makes it impossible to conclude whether the failure 

of rabbits to learn is caused by the absence of IO teaching signals or whether the lack of 

learning is due to the cerebellar tonic malfunction.  Thus, in order to effectively test the role 

of IO US signals in CR acquisition, we must be able to block these signals while maintaining 

near-normal spontaneous IO activity to prevent cerebellar tonic malfunction. 

One possible way to block IO US signals would be to inject a glutamate antagonist in 

the IO.  It is known that signals relayed from the trigeminal nucleus to the IO are mediated 



www.manaraa.com

16 

 

  

 

by glutamate (Lang, 2001).  Therefore, blocking glutamate neurotransmission would block 

the incoming US signal.  Although blocking glutamate in the IO does indeed block 

somatosensory information from the face, the injections also reduce the normal spontaneous 

firing rate in the IO by approximately 50% (Lang, 2001).  Prior experiments in our lab in 

which glutamate antagonists were injected in the IO and extracellular, single-unit neuronal 

activity was recorded in the IN show that behaviorally, these injections cause an immediate 

abolition of previously learned CRs and this immediate abolition is a consequence of a 

complete tonic suppression of spontaneous firing in the IN (Zbarska et al., 2007; 2008).  

Hence, even a small reduction in IO firing rate from about 1 Hz under normal conditions to 

about 0.5 Hz induces a major tonic suppression in the output neurons of the cerebellum.    

It appears from the above studies that just blocking glutamate in the IO is not an 

effective means to test the role of the IO in CR acquisition because these injections also 

induce cerebellar tonic malfunction.  As a result of these findings, we hypothesized that we 

could design experiments using combined drug injections in the IO.  These combined 

microinjections would entail the injection of a glutamate antagonist to block IO US signals 

followed by a GABAA antagonist to block inhibitory inputs that innervate IO neurons.  By 

blocking these GABAA inputs and thus blocking their inhibitory drive, this treatment could 

restore IO firing to a more physiologically normal level.  This experimental logic parallels a 

previous experiment showing that injecting the GABAA antagonist picrotoxin in the IO 

increases IO activity (Lang, 2002).  The initial critical steps in implementing this highly 

promising method for determining the IO function in eyeblink conditioning are described in 

Chapters 3 and 4.  
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CHAPTER 2:  A TRIGEMINAL CONDITIONED STIMULUS YIELDS 

FAST ACQUISITION OF CEREBELLUM-DEPENDENT 

CONDITIONED EYEBLINKS 

A paper published in the journal “Behavioural Brain Research”1 
 

A.J. Carrel2,3, G.D. Zenitsky2, and V. Bracha2,4 
 

2.1 Abstract 

 Classical conditioning of the eyeblink response in the rabbit is a form of motor 

learning whereby the animal learns to respond to an initially irrelevant conditioned stimulus 

(CS)  It is thought that acquired conditioned responses (CRs) are adaptive because they 

protect the eye in anticipation of potentially harmful events.  This protective mechanism is 

surprisingly inefficient because the acquisition of CRs requires extensive training – a 

condition which is unlikely to occur in nature.  We hypothesized that the rate of conditioning 

in rabbits could depend on CS modality and that stimulating mystacial vibrissae as the CS 

could produce CR acquisition faster than the traditional auditory or visual stimulation.  We 

tested this hypothesis by conditioning naïve rabbits in the delay paradigm using a weak air-

puff CS (vCS) directed to the ipsilateral mystacial vibrissae.  We found that the trigeminal 

                                                 
1 Reprinted with permission of “Behavioural Brain Research”, 2012. 

2 Department of Biomedical Sciences, Iowa State University. 

3 Primary researcher. 

4 Corresponding author. 
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vCS yields significantly faster CR acquisition.  We next examined if vCS-evoked CRs are 

dependent on the intermediate cerebellum in the same fashion as CRs evoked by the 

traditional auditory CS.  We found that vibrissal CRs could be abolished by inactivating the 

cerebellar interposed nuclei (IN) with muscimol.  In addition, injections of picrotoxin in the 

IN shortened the onset latency of vibrissal CRs.  These findings suggest that the tone and 

vCS-evoked CRs share similar cerebellar dependency. 

2.2. Introduction 

 Classical conditioning of the eyeblink reflex in rabbits has proven to be a successful 

model for the study of associative and motor learning.  This model has many benefits, 

including precise control of experimental variables and an extensive knowledge of circuitry 

controlling the acquisition and expression of conditioned responses (CRs) [1-6].  

 During eyeblink conditioning, an initially irrelevant conditioned stimulus (CS, e.g., 

an audible tone) is paired with an aversive, eyeblink reflex-evoking unconditioned stimulus 

(US, e.g., airpuff to the cornea).  After repeated paired presentations of the two stimuli, 

subjects acquire conditioned responses (CRs), which are expressed in anticipation of the 

upcoming US.  CRs are considered to be adaptive responses that protect the eye from 

potentially harmful events.  Consistent with this notion, CRs are adaptively timed with the 

response peak occurring close to the onset of the US [7-10].  Taking into account the 

protective function of CRs, their acquisition in rabbits is surprisingly slow.  The most 

commonly used CS modalities (auditory and visual) generally produce asymptotic learning 

curves after four to six training days [11-18].  Such slow learning would likely have limited 

practical significance under natural conditions.  The relatively slow rate of eyeblink 
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conditioning has implications not only for a rabbit’s fitness, but also for experimenters.  A 

faster learning rate would be highly desirable, especially in studies designed to interfere with 

learning by using repeated drug microinjections into specific parts of eyeblink circuits.  Since 

failure of a single microinjection would negatively affect experiments requiring repetitive 

treatments, shortening the number of training sessions required for CR acquisition would 

significantly improve the experimental design.  

 For rabbit eyeblink conditioning, domesticated breeds (New Zealand White, Dutch-

belted) of the European Rabbit (Oryctolagus cuniculus) serve as the research model.  We 

hypothesized that slow CR acquisition in rabbits could be accelerated with a different CS 

modality.  Under natural conditions, the eye of the rabbit likely encounters harmful objects 

during locomotion through a complex environment.  European Rabbits are crepuscular 

animals native to open forest scrub habitats [19], and therefore, approaching objects should 

be reliably signaled by vision.  Indeed, a number of mammalian species (e.g. humans, horses, 

dogs and cats) display robust and naturally learned, visual menace eyeblinks.  However, 

rabbits don’t develop visual menace-triggered blinks, and their rate of CR acquisition to 

arbitrary visual stimuli is relatively slow [13], similar to the traditional auditory CS.  Another 

potentially effective “natural” CS could be derived from the vibrissal somatosensory input.  

Rabbits are endowed with an elaborate vibrissal system and the long and far-projecting 

whiskers represent an excellent early-warning system for detecting objects approaching their 

eyes.  The vibrissal system in rabbits is very sensitive and its stimulation can elicit reflexive 

alpha eyeblink responses [20].  Importantly, previous studies have demonstrated that 

stimulation of mystacial vibrissae could be used in eyeblink conditioning [20-23].  
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 In this study, we examined whether vibrissal stimulation could be optimized to yield 

accelerated CR acquisition.  We found that a simple vibrissal airpuff CS (vCS) yields robust 

and fast CR acquisition both in naïve and previously trained animals.  In the second part of 

this study, we tested whether vCS-evoked CRs depend on cerebellum-related circuits.  Here 

we report that, similar to traditional auditory CS-triggered CRs, vCS-evoked CRs are 

abolished by inactivating the cerebellar interposed nuclei (IN) with muscimol and their 

latencies are shortened by elevating IN activity with picrotoxin.  

2.3 Material and methods 

2.3.1  Subjects 

 Experiments were performed on 16 male New Zealand White Rabbits (Harlan; 

Indianapolis, IN) weighing 2.5–3.0 kg (3–4 months old at time of surgery).  Rabbits were 

housed individually on a 12-hour light/dark cycle and provided food and water ad libitum.  

All experiments were performed in accordance with the National Institutes of Health's 

“Principles of Laboratory Animal Care” (publication No. 86-23, revised 1985), the American 

Physiological Society's “Guiding Principles in the Care and Use of Animals,” and the 

protocol approved by Iowa State University's Animal Care and Use Committee. 

2.3.2 Surgery 

 Surgery was performed using aseptic techniques on naïve rabbits anesthetized with a 

mixture of ketamine (50 mg/kg), xylazine (6 mg/kg) and acepromazine (1.5 mg/kg).  The 

head was secured in a stereotaxic apparatus with lambda positioned 1.5 mm ventral to 

bregma.  After exposing the skull and affixing three stainless steel anchor screws, a stainless 

steel injection guide tube (27-gauge thin-wall) was stereotaxically implanted 0.5 mm dorsal 
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to the expected location of the left anterior IN (((0.69x+4.8)-x) rostral from lambda, x being 

the horizontal distance between bregma and lambda in mm; 5.3 mm lateral and 13.5 mm 

ventral to lambda).  A 33-gauge stainless steel stylet was inserted into the guide tube between 

experiments to protect its patency.  The guide tube, anchor screws, and a small Delrin 

(polyoxymethylene thermoplastic) block machined to accommodate an airpuff delivery 

nozzle and eyeblink sensor were secured in place with dental acrylic.  All animals were 

treated with antibiotics for 5 days while recovering from surgery. 

2.3.3 Training Procedures 

 Prior to surgery, rabbits were adapted to a restraint box (Plas-Labs Inc., Lansing, MI) 

inside a sound attenuating chamber for 30 min on two consecutive days.  Following surgery, 

rabbits were given one additional day of box adaptation.  Rabbits were assigned to one of 

three groups: the naïve, pseudoconditioning, or 2nd CS group.  Animals in the naïve group 

were trained to a 450-ms weak airpuff CS directed at rows B and C of the left mystacial 

vibrissae (vCS).  The strength of this CS was individually calibrated for each rabbit to an 

intensity that was just below the threshold for eliciting an alpha response.  Initially, the CS 

intensity was calibrated using a Clippard MAR-1-6 pressure regulator (Clippard Instrument 

Laboratory, Cincinatti, OH).  Later, we switched to another pressure regulator (Bellofram 

Corporation, Precision Pressure Regulator Type 10LR, Newell, WV) that could more reliably 

produce the lower CS pressures required in several subjects.  Rabbits in the 

pseudoconditioning group were given an equal number of trials in each session (100 trials of 

each stimulus) of explicitly unpaired presentations of the vCS and US in a randomized order.  

Following pseudoconditioning, rabbits were given a retention test consisting of 40 CS-alone 
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trials.  The purpose of the retention test was to obtain a set of measurements which would be 

compatible with future experiments examining effects of drugs on vCS-evoked CR 

acquisition.  Animals in the 2nd CS group were initially trained to a tone CS. The tone CS 

was an 85-db, 450-ms, 1-kHz tone, superimposed on a continuous 70-dB white noise 

background.  After acquiring tone-evoked CRs, they were trained to the vCS. All 

experimental sessions were conducted using the standard delay classical conditioning 

paradigm until rabbits reached at least 90% CRs for 3 consecutive days.  Both CS types co-

terminated with a 36-psi (at the source), 100-ms air-puff unconditioned stimulus (US) 

directed to the left eye.  The inter-stimulus interval was 350 ms and the intertrial interval 

varied pseudorandomly between 15 to 25 sec.  Each training session consisted of 100 paired 

trials per day.  During the sessions when the vCS was delivered, a discriminatory airpuff with 

an intensity of 6 psi was triggered every 7 seconds throughout the duration of the session.  

This discriminatory airpuff was used to ensure that the rabbit was responding to the vCS and 

not responding to the sounds of the solenoid or the air exiting the air nozzle.   

2.3.4 Injection procedures 

 Microinjections targeted the IN ipsilateral to the vCS and US. They were delivered 

through a 33-gauge stainless steel injection needle that was connected to a 10-µl Hamilton 

syringe (Hamilton Company, Reno, NV) via transparent Tygon tubing.  The Tygon tubing 

was first filled with ultra-purified water, a small air bubble was pulled into the injection 

needle, and then the drug was drawn into the tubing.  The bubble was used to monitor the 

volume of drug being injected relative to gradation marks located on the tubing.  The 

injection needle was inserted in the intracranial guide tube before starting the experiment.  
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Forty pre-injection trials were delivered in order to ensure there were no effects on CR 

incidence due to needle insertion.  The injections were performed manually at a rate of 0.25 

µl/min and after their completion, training continued for an additional 100 trials.  If rabbits 

had less than 85% CRs in the pre-injection period, drug injections were not delivered.  

Muscimol (Enzo Life Sciences, Switzerland) and picrotoxin (PTX, Sigma-Aldrich, USA) 

were dissolved in artificial cerebrospinal fluid (aCSF) and the pH of the solution was 

adjusted to 7.4 ± 0.1. Injections of picrotoxin (0.83-2.5 nmol) and aCSF were administered at 

locations where previous 0.5 ul (1.75 nmol) injections of muscimol completely abolished 

conditioned eyeblinks.  All rabbits were first injected with muscimol to determine the 

optimal depth for IN injections.  Once the optimal site was determined, picrotoxin 

volume/concentration was individually titrated for each rabbit in order to produce the dose-

dependent short latency responses as described in Parker et al. [24].  Following the final PTX 

experiment, each rabbit was injected with a control injection of an equal volume of aCSF.  

This order of injections was followed for each rabbit in order to show the effects of IN 

inactivation, disinhibition, and vehicle on CRs.  

2.3.5 Data recording and analysis 

 Movements of the eyelids were recorded by a wide field-of-view infrared sensor that 

measures the amount of infrared light reflected from the eye and peri-orbital region [25].  

The output of the sensor was amplified, digitized (25 kHz, 12-bit A/D converter), and stored 

on a custom-made data acquisition system.  An infrared video system installed in the 

experiment chamber was used to monitor behavior of the rabbits and the positioning of the 

infrared sensor.   
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Eyeblink data were acquired starting 250 ms before the onset of the CS and continued 800 

ms beyond the US onset for a total of 1400 ms in each trial.  Eyeblink responses were 

analyzed offline for the presence of alpha responses, CRs, and URs, each defined by their 

onset latencies.  An alpha response was classified as any response up to 40 ms after CS onset, 

a CR as an eyelid movement within 41 ms after CS onset up to the US onset, and a UR as 

any response to the US.  Trials containing spontaneous eyeblinks before CS onset were 

removed from further analyses.  The threshold for eyelid movements was set to 5 standard 

deviations of the baseline signal noise, which corresponded to approximately a 0.15 mm 

decrease in eyelid aperture.  Mean CR incidence and latency were calculated for consecutive 

blocks of 10 trials.  The data were pooled from individual rabbits and statistically analyzed 

using repeated measures ANOVA followed by individual and simultaneous contrast 

analyses.  All group data were reported as mean ± standard error of the mean, with an alpha 

level = 0.05 for declaring significance.  

2.3.6 Histology 

 After all experiments were concluded, rabbits were deeply anesthetized with a 

cocktail of ketamine (100 mg/kg), xylazine (12 mg/kg), and acepromazine (3 mg/kg).  

Injection sites were marked by injecting 0.75-1.0 µl of tissue marking dye.  Rabbits were 

transcardially perfused with 1 L of phosphate buffered saline followed by 1 L of tissue 

fixative (10% neutral buffered formalin).  Excised brains were stored in a solution of 30% 

sucrose and 10% formalin.  Brains were sectioned coronally in 50-µm slices on a freezing 

microtome.  Subsequently, sections were mounted on gelatin-coated slides, dried, and stained 
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with luxol blue and neutral red.  Injection site locations were identified using bright light 

microscopy and plotted on standardized sections of the rabbit cerebellum.  

2.4 Results 

2.4.1 General observations 

 The vCS was a very effective conditioned stimulus and all rabbits acquired vCS-

evoked CRs quickly.  One of the features of the vCS is that it can evoke URs when 

sufficiently strong.  The intensity of the vCS was individually adjusted for each rabbit at the 

onset of training to a sub-threshold level for UR expression.  The initial sub-threshold vCS 

intensity varied from 2-20 psi between rabbits.  Due to conditioning-related reflex facilitation 

[26], this threshold was not constant.  As the training progressed, in some animals the initial 

vCS intensity began to evoke small URs.  The transition of these URs into developing CRs 

formed a two-peak response, reminiscent of the multi-component CRs described in mice 

[27].  If the vCS UR was observed, the intensity of vCS was further decreased to the sub-

threshold level.  This procedure ensured that all rabbits developed long-latency, single 

component CRs to the vCS.  The vCS-evoked CRs were unilateral in all animals.  Absence of 

responses to discriminative masking hisses of the air confirmed that acquired CRs were 

specific to the somatosensory component of the CS.  

 A total of 15 rabbits were included in the injection experiments.  After histological 

analysis, three rabbits were excluded from the results due to misplaced implants.  The 

histological reconstruction of IN injection sites for the rabbits included in the analyses of 

pharmacological effects revealed that all rabbits had their injection cannulae either directly in 

or proximal to the IN (Fig. 1).  
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Figure 1.  Reconstruction of injection sites in the IN. The identified sites were transferred to 

a set of standardized coronal sections of the rabbit cerebellum.  A-F: Six adjacent sections 

through the cerebellum, separated by 0.5 mm and arranged in rostral-caudal order with “A” 

being most rostral.  All injection sites were located directly in or proximate to the anterior 

interposed nucleus and the anterior interposed/dentate nuclear border.  InA, anterior 

interposed nucleus; DN, dentate nucleus; LV, lateral vestibular nucleus; SV, superior 

vestibular nucleus; InP, posterior interposed nucleus; FN, fastigial nucleus; scp, superior 

cerebellar peduncle; icp, inferior cerebellar peduncle. 

 

2.4.2 The rate of CR acquisition to the vCS and to the tone CS 
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Figure 2.  Individual examples of eyeblink stack plots showing acquisition of CRs over three 

days of vCS training in one naïve rabbit.  The first trial for each100-trial experimental 

session is at the top of the stack plot and each eyeblink trace represents one trial.  (A) During 

Day 1 of training to the vCS, this rabbit produced only a few small CRs.  (B) On Day 2 of 

training, the rabbit began to exhibit frequent and normal-sized CRs (upward trace deflections 

between the CS and US markers).  Towards the middle of the training session, the CRs show 

much larger amplitude and the peak of the response becomes time-locked with the US onset.  

(C) During the third day of training, the rabbit exhibited an asymptotic level of CRs. 

  

 Rabbits trained with the vCS acquired CRs in a quick and steady fashion.  Figure 2 

shows an individual example from each of the first three days of training with paired vCS-US 
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trials from one of the rabbits in the naïve group.  Over the three days of training, rabbits 

develop substantial, properly-timed CRs whose amplitude peaked at the onset of the US.  At 

the group level, the rate of acquisition in naïve rabbits (n = 4) trained with the vCS was 

considerably faster than naïve rabbits trained to a tone CS (F3,18 = 3.668, p = 0.03) (Fig. 

3A).  Unlike the tone group, rabbits in the naïve vCS group exhibited a fair number of CRs 

on Day 1 of training and during Day 2 of training already had a mean CR incidence of 79.2 ± 

17.8%.  On Day 3, rabbits reached an asymptotic level of conditioned responding, producing 

a mean CR incidence of 90.0 ± 5.8%.  By comparison, rabbits assigned to the naïve tone 

group (n = 4) showed a mean CR incidence of 5.6 ± 4.3% on Day 2 and 47.3 ± 11.4% on 

Day 3 while not reaching an asymptotic level of responding until Day 6, exhibiting a mean 

CR incidence of 90.1 ± 0.96%.  These data show that a weak airpuff to the ipsilateral 

mystacial vibrissae produces faster CR acquisition than the more commonly used auditory 

CS modality.  
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Figure 3.  Group learning curves (n = 4 for each group) for the vCS and tone CS.  The vCS 

was used for conditioning in naïve rabbits, as a second CS in tone-trained rabbits, and after 

three days of pseudoconditioning.  (A) Training naïve rabbits with the vCS (squares) 

produces faster CR acquisition than training naïve rabbits with a tone CS (triangles).  Rabbits 

reached the 90% threshold using the vCS in three days while the tone CS group required six 

days.  (B) Training with the vCS in naïve rabbits, as a second CS, or following 

pseudoconditioning all produced an asymptotic level of responding by Day 3. 

 

 2.4.3 vCS as a second CS 

 In addition to testing the rate of CR acquisition to the vCS in naïve rabbits, we also 

tested the rate of acquisition in rabbits (n = 4) using the vCS as a second CS for a group of 

rabbits that had already been well trained to a tone CS.  Using the vCS as a second CS 

resulted in acquisition that was numerically faster than vCS in naïve rabbits.  The mean CR 

incidence on Day 2 of 2nd conditioning was already 91.4 ± 4.7% (Fig. 3B).   

2.4.4 Pseudoconditioning 

 To test whether vCS-evoked eyeblinks are a product of an associative process, a 

group of rabbits (n = 4) was trained with explicitly unpaired vibrissal conditioned stimuli and 

corneal airpuff unconditioned stimuli.  During the three days of pseudoconditioning (Fig. 4), 

the rabbits did not exhibit any signs of acquiring conditioned responses (maximum CR 

incidence, 2.57 ± 1.95%, Day 3) relative to the rate of spontaneous eyeblinks.  However, 

pseudo-conditioned rabbits did exhibit normal US-evoked eyeblinks.  Following 

pseudoconditioning, a retention test (40 CS-alone trials) was presented to test for any CRs 
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acquired during the three days of pseudoconditioning.  The mean CR incidence for the 

retention test was 0.63 ± 0.62%.  Following pseudoconditioning, the rabbits were trained 

with paired vCS-US trials.  By means of stimulus pre-exposure, pseudoconditioning may 

have delayed the onset of learning typically seen on Day 1 during vCS conditioning.  

Otherwise, rabbits rapidly acquired CRs to the vCS, reaching a mean CR incidence of 95.5 ± 

0.5% by Day 3 of training (Fig. 4).  The pseudoconditioning results showed that the vCS-

evoked CRs are learned, associative responses.  
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Figure 4.  CR incidence for rabbits during pseudoconditioning, retention, and post-

pseudoconditioning training.  During the three days of pseudoconditioning (P1-P3), rabbits 

exhibited minimal CRs to the unpaired vCS and showed no signs of learning during the 

retention test (Ret; 40 vCS-alone trials) performed after pseudoconditioning.  Following the 

retention test, all rabbits showed rapid learning, reaching ≥ 90% CRs on the third day of 

training with paired vCS-US trials. 
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Figure 5.  Individual examples of behavioral effects from one rabbit following muscimol and 

PTX injections in the IN.  The experiments start at the top and each horizontal eyeblink trace 

represents one trial of the 140-trial experimental session.  (A) Effect of a muscimol injection 

(indicated by an arrow in the stack plots).  After the injection, CRs (upward deflections of the 

trace between the CS and US markers) were abolished almost immediately and the effect 

lasted for the duration of the experiment.  (B) PTX shortened the latency of vCS-evoked CRs 

and this effect also lasted for the remainder of the session.  The reduced amplitude of blinks 

at the end of the experiment is due to PTX-induced tonic eyelid closure.  (C) The control 

experiment in which vehicle (aCSF) had no effect on CRs. 

 

2.4.5 Cerebellar dependency of vCS-evoked CRs 
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 The previous results showed that vibrissal stimulation produces faster acquisition than 

a tone CS and that CRs exhibited by the vCS are learned, associative responses.  To further 

characterize these responses, we tested whether they are cerebellum-dependent.  Specifically, 

we examined whether inactivating or activating deep cerebellar nuclei would affect vCS-

evoked CRs in a way similar to previously reported effects of these manipulations on tone-

evoked CRs [24, 28-30].   

 The first pharmacological test was an injection of the GABA agonist muscimol in the 

IN.  Figure 5A shows an individual example of a muscimol injection in the IN.  During the 

pre-injection trials, the rabbit exhibited adaptively timed, large amplitude vCS-evoked CRs.  

The vCS-evoked CRs were abolished following the muscimol injection and this effect was 

maintained for the rest of the experimental session.  At the group level, when compared to 

vehicle injections, muscimol (1.75 nmol) abolished CRs in the post-injection trials (F1, 11 = 

957.03, p < 0.0001) (Fig. 6A).  The onset of behavioral effects from the injection was rapid 

as the mean CR incidence was significantly reduced in the initial post-injection block of 10 

trials compared to pre-injection CR incidence (contrast-t11 = 3.35, p = 0.006) (Fig. 6A). 

Muscimol reduced the mean CR incidence from 93.3 ± 2.25% during the last pre-injection 

block of trials to 0.83 ± 0.83% by the fourth post injection block and maintained its effect for 

the duration of the experiment.  In addition to effects on eyeblinks, muscimol injections also 

visibly decreased UR amplitude and increased the aperture of the palpebral fissure.  

 After establishing an effective injection site in the IN with muscimol and testing its 

effects on CRs, an injection of the GABA antagonist PTX was administered at the same 

location.  Injections of PTX (0.83-2.5 nmol) produced several distinct effects on CRs.  First 
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of all, the selected amount of PTX visibly shortened CR latencies (Fig. 5B).  This effect was 

significant at the group level when compared to pre-injection trials (F1, 11 = 37.24, p < 

0.0001). The mean CR latency was reduced from 171.4 ± 12.6 ms in the last pre-injection 

block of trials to 72.2 ± 14.4 ms by the fourth and to 63.3 ± 5.5 ms by the sixth post-injection 

block of trials (Fig. 6B).  PTX injections had no effect on CR incidence (Figs. 5B and 6A). 
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Figure 6.  Group data (n = 12) for CR incidence (± SEM) and latency (± SEM) following 

injections in the IN.  Dashed vertical line denotes time of injection for the experiments.  (A) 

The effect of muscimol on CR incidence.  An injection of muscimol (squares) immediately 

impaired CR expression and completely abolished CRs for the remainder of the experiment.  

The PTX (diamonds) and aCSF injections (triangles) did not significantly affect CR 

incidence.  (B) The effect of a PTX injection on CR latency.  The PTX injection (squares) 

significantly shortened CR latency, compared to a vehicle injection (triangles), for the 

duration of the experiment. 
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 As previously reported by Parker et al [24], CR latency-shortening doses of PTX 

increased overall excitability of rabbits, increased tonic eyelid closure, and instead of 

producing isolated eyeblink movements, rabbits frequently reacted to the CS and US with a 

whole-head withdrawal away from the air nozzle.  

 The pharmacological data presented here provide clear evidence that CRs generated 

by the vCS modality are dependent on the intermediate cerebellum and that, similar to 

auditory CS-evoked CRs, the incidence and latency of the CRs can be manipulated by up- or 

down-regulating neuronal activity in the IN. 

2.5 Discussion 

 The objective of the present study was to determine whether a vibrissal CS could 

produce fast CR acquisition.  The results show that using a weak airpuff CS to the ipsilateral 

mystacial vibrissae does generate faster CR acquisition than the most commonly used 

auditory stimulation.  In addition, we found that vCS-triggered CRs and auditory-triggered 

CRs share similar cerebellar dependency. 

 Using an auditory or visual CS, rabbits typically acquire an asymptotic level of CRs 

after about four to six days [11-18].  In agreement with previous studies [20-22], we 

confirmed that stimulation of the vibrissae could be used as a CS in eyeblink conditioning.  

Here, we show that an airpuff that is just sub-threshold in respect to evoking unconditioned 

eyeblinks is a very effective CS that supports fast acquisition of CRs.  A naïve-trained group 

of rabbits showed well-timed, adaptive blinks while reaching the asymptotic level of CR 

incidence in three days and in fact, most of the animals exhibited a near-asymptotic level of 

performance by the second day of training (Figs. 2B and 3A).  In addition, rabbits trained 
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with the vCS as a second CS reached a CR incidence of greater than 90% in just two days.  

This accelerated conditioning in animals trained with the vCS as a second CS is consistent 

with the previously reported effects of extended box adaptation [31] and cross-modal 

“savings” [32-34].  

 Along with an increase in CR incidence over the course of training, the vCS-evoked 

CRs showed an increase in amplitude and became more time-locked with the peak of the 

response coinciding with the onset of the US (Fig. 2).  In addition, their topography was 

similar to tone-evoked CRs.  The relatively long latency (Fig. 6B) and adaptive topography 

of vCS-evoked CRs indicated that they are an outcome of associative learning.  However, 

assessing the potential involvement of non-associative learning required an explicit test.  The 

possibility that the acquisition of responses to the vCS was a result of some non-associative 

aspect of learning (e.g., sensitization) was eliminated by the pseudoconditioning experiment.  

The absence of CRs during the three days of the pseudoconditioning control experiment, 

along with the pseudoconditioning group exhibiting a similar learning curve to the naïve 

group following the pseudoconditioning training, provides evidence that vCS-evoked CRs 

are an outcome of associative learning.  

 Faster acquisition of CRs to the vCS does not necessarily prove that the vCS is the 

most effective sensory modality for eyeblink conditioning in rabbits.  For example, it is 

known that the rate of conditioning also depends on CS intensity.  Scavio and Gormezano 

[35] reported that rabbits acquire CRs faster with a loud 86-dB tone CS than with a soft 65-

dB CS.  Thus, the loud 85-dB auditory CS is now the most commonly used CS intensity.  

Even though an 85-dB tone is fairly loud, one can’t exclude that even louder auditory CS 
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intensities would produce a CR acquisition rate that is comparable to vCS training.  

However, it is difficult to conceive a common situation in the rabbit’s environment where 

auditory stimuli louder than 85 dB would reliably predict localized danger to the eye.  In 

contrast to this, the vCS intensity used in this study seems to be well within the range of 

frequently encountered intensities of the rabbit’s natural facial stimulation.  In fact, several 

subjects were vCS-trained with 2 psi.  This source pressure in our delivery system produces a 

very weak airpuff and its impact on the vibrissal pad produced barely visible hair deflections.  

Yet, it yielded fast learning.  Since commonly encountered intensities of the vCS yield CR 

acquisition faster than infrequently occurring strong auditory CS intensities, it appears that 

the eyeblink conditioning system in the rabbit is comparably better tuned to the facial 

cutaneous input.  

 One could argue that even vCS conditioning is too slow to provide rabbits with 

effective eye protection.  After all, most of our rabbits generated a high CR incidence on the 

second day of conditioning, and by that time they had been exposed to more than 100 

conditioning trials!  Requiring this many trials to acquire protective responses seems 

inefficient, especially when compared to other forms of biologically-tuned forms of learning, 

such as conditioned taste aversion, where a one-trial exposure to the CS and US is sufficient 

for robust learning [36].  Before drawing conclusions from this comparison, it is important to 

realize that not all training parameters in typical laboratory eyeblink conditioning sessions 

are designed to maximize the rate of learning.  For example, it is known that fewer than a 

dozen trials can yield the first CR when rabbits are trained in 1-trial/day sessions (for review 

see [37]).  It appears that the number of training sessions rather than the cumulative number 
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of trials better describes the rate of eyeblink conditioning.  From this perspective, even 

eyeblink conditioning to a tone CS could be viewed as providing rabbits with some adaptive 

advantage.  Why then do typical eyeblink conditioning sessions run 100, seemingly 

redundant trials?  This “sub-optimal” arrangement is deliberate.  Yes, it inflates the 

cumulative number of trials required for learning, but this cost is outweighed by the 

numerous advantages offered by repeated sampling.  Aside from the possible need to 

introduce probe-CS or US-alone trials, multiple trials control for potentially large per-trial 

differences between individual animals, including spontaneous responses, chance events 

(e.g., postural movements), and the onset and duration of drug effects.  Without repeated 

trials, spurious sampling errors would contaminate the measurements of intervention effects 

on CR incidence, eyeblink kinematics, and neuronal activity in neurophysiological 

experiments.  The only other option the investigator would be left with is to add many more 

animals to the experiment. 

 Why do rabbits learn to respond to the vibrissal CS faster than to auditory or visual 

conditioned stimuli?  It is likely that during evolution neuronal circuits controlling eyeblink 

conditioning were honed by species-specific selective pressures.  European rabbits are prey 

animals and their visual and auditory systems play a pre-eminent role in teleceptive predator 

detection.  As a consequence, arbitrary visual and auditory stimuli evoke a strong orienting 

response, part of which is the opposite of an eyeblink–eyelid opening.  This competing 

response has to be habituated first before the animal learns to blink and this process could 

delay CR acquisition.  We presume that the importance of teleception in predator detection is 

also reflected in the fact that rabbits don’t display visual menace eyeblink responses.  The 
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menace eyeblinks are naturally learned conditioned eyeblinks [38] and if evoked by distant 

objects, they could interfere with continuity of visual input that is required for effective 

predator avoidance.  Thus, neuronal circuits that control visual menace eyeblinks are present, 

but not optimized in this species.  On the other hand, vibrissae and guard hairs are reliable 

predictors of nearby and imminently harmful objects, especially during locomotion when the 

head and eye frequently approach stationary objects, such as vegetation or walls of a rabbit’s 

burrow.  In this context, it is not surprising that mammals respond to strong stimulation of the 

extra-ocular trigeminal region with unconditioned eyeblinks and that eyeblink conditioning 

circuits in rabbits are well primed for vibrissal sensory input.  

 Because of the fast rate of CR acquisition, vCS conditioning could be well suited for 

studies examining effects of drug microinjections on CR acquisition.  Typically, experiments 

of this kind require sequential days of drug injections before each daily training session [16, 

17, 30].  Shortening the CR acquisition period would reduce the number of injections and 

thus the likelihood of injection failure invalidating an experiment.  The potential of the vCS 

for eyeblink conditioning studies is further enhanced by our demonstration that vCS-evoked 

CRs are cerebellum-dependent.  The cerebellar dependency is a hallmark feature of tone and 

light-evoked CRs in the rabbit.  It has been repeatedly shown that inactivating the IN with 

either lidocaine or muscimol abolishes previously acquired tone or light CS-evoked CRs [28, 

39-43].  Similar to these findings, vCS evoked CRs are abolished when the IN is infused with 

muscimol (Figs. 5A and 6A).  Muscimol is a GABA-A agonist which hyperpolarizes 

neurons, blocking their task-related responses and also their spontaneous activity [28].  On 

the other hand, picrotoxin is known to reduce task-related modulation of IN neuronal activity 
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and to dramatically increase their spontaneous firing rate [28].  This effect translates into a 

dose-dependent effect on the expression of tone CS-evoked CRs.  At lower doses, IN PTX 

shortens CR latencies [24, 44] and at higher doses it abolishes CRs [24].  Similar to the 

auditory CS, the vCS-evoked CRs have shorter latencies following PTX injections (Figs. 5B 

and 6B).  Surprisingly, we were not able to abolish vCS-evoked responses with higher doses 

of PTX (data not shown).  The most likely explanation for this finding is that high PTX dose-

associated responses were not CRs, but rather facilitated unconditioned responses to the vCS  

IN PTX is known to facilitate trigeminal unconditioned eyeblinks [24] and it is plausible that 

the originally sub-threshold intensity of the vCS became supra-threshold following the drug 

injection.  Similar facilitation of tone CS-evoked URs by PTX has been previously reported 

in naïve rabbits [45].  

 It is clear that vCS-evoked CRs share similar cerebellar dependency with tone-evoked 

CRs.  Cerebellar involvement in the control of vCS CRs offers a possible explanation to the 

enhanced speed of learning.  Most of the present concepts assume that a significant portion of 

plastic changes responsible for CR acquisition occur in the cerebellum [18, 30, 46, 47].  

Cerebellar learning requires sensory information which is brought via cerebellar mossy fibers 

from the pontine nuclei and via climbing fibers from the inferior olive.  Auditory as well as 

trigeminal CS information reaches the cerebellum via projections to the pontine nuclei [48-

51].  In addition to pontine projections, trigeminal sensory nuclei, including their parts that 

receive vibrissal information [52, 53], are known to project directly to the cerebellar cortex 

[51].  It is possible that these direct projections, together with the pontine input, could 
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facilitate CR acquisition.  In addition, information processing in the cerebral cortex could 

also contribute significantly to vCS conditioning [23].  

 Overall, the presented data demonstrate that the vCS yields fast acquisition of 

associative, classically conditioned responses in rabbits and that these CRs share similar 

cerebellar dependency with tone CS-evoked CRs.  These features make the vCS well suited 

for future investigations of this form of motor learning.    
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CHAPTER 3:  BLOCKING GLUTAMATE-MEDIATED INFERIOR 

OLIVARY SIGNALS ABOLISHES EXPRESSION OF CONDITIONED 

EYEBLINKS BUT DOES NOT PREVENT THEIR ACQUISITION 

A paper prepared to be submitted to the Journal of Neuroscience 
 

A.J. Carrel5,6, G.D. Zenitsky5, and V. Bracha5,7 
 

3.1 Abstract 

The inferior olive (IO) is considered a crucial component of the eyeblink conditioning 

network.  The cerebellar learning hypothesis proposes that the IO provides the cerebellum 

with a teaching signal that is required for acquisition and maintenance of conditioned 

eyeblinks.  Supporting this concept, previous experiments showed that lesions or 

inactivations of the IO block CR acquisition.  However, these studies were not conclusive. 

The drawback of these methods is they not only block task-related signals but also 

completely shut down the spontaneous activity within the IO, which affects in a non-specific 

manner the remaining eyeblink circuits.  We hypothesized that more appropriate and 

selective blocking of task-related IO signals can be achieved by using injections of glutamate 

antagonists, which reduce, but do not eliminate the spontaneous activity in the IO.  We 

expected that if glutamate-mediated IO signals are required for learning, their blocking 

during training sessions should prevent CR acquisition.  To test this prediction, rabbits were 
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7 Corresponding author. 
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trained to acquire conditioned eyeblinks to a mild vibrissal airpuff as the conditioned 

stimulus (vCS) while injections of the glutamate antagonist DGG were administered to the 

IO.  Remarkably, even though IO DGG injections suppressed CRs during training sessions, 

the post-acquisition retention test revealed that CR acquisition was not abolished.  The ability 

to acquire CRs with IO US signals blocked or severely suppressed suggests that mechanisms 

responsible for CR acquisition are extremely robust and probably less dependent on IO task-

related signals than previously thought. 

3.2 Introduction 

In the delay classical conditioning paradigm, a biologically neutral conditioned 

stimulus (CS) is presented with an aversive unconditioned stimulus (US) whereby the timing 

of the two stimuli overlap and co-terminate. After several training sessions, animals learn to 

respond to the CS with anticipatory conditioned responses (CRs). The cerebellar learning 

hypothesis proposes that the inferior olivary nucleus (IO) supplies the cerebellum with 

information about the US in the form of a “teaching signal” that is essential for learning and 

maintenance of CRs.  This hypothesis was supported by showing that neurons in the IO fire 

in response to presentation of the US (Gellman et al., 1983; Weiss et al., 1993).  Moreover, 

previous acquisition studies in which the IO was lesioned or inactivated using lidocaine show 

that rabbits can’t acquire new CRs in the absence of IO US signals (Yeo et al., 1986; Mintz et 

al., 1994; Welsh and Harvey, 1998).    

The weakness of these acquisition studies is that they did not account for tonic 

cerebellar malfunction that is known to be triggered by inferior olivary lesions or inactivation 

(Colin et al., 1980; Montarolo et al., 1982; Batini et al., 1985).  Thus, in these studies, it’s 
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unknown whether blocked IO sensory signals or the tonic malfunction of cerebellar circuits 

was the primary cause of the rabbits’ failure to learn.  Ideally, to test the role of IO US 

signals in CR acquisition, one needs to block these signals without affecting IO and 

cerebellar spontaneous activity.   

It has been established that signals relayed to the IO from the trigeminal nucleus are 

mediated by glutamate (Lang, 2001).  Therefore, blocking glutamate neurotransmission in 

the IO could be the solution for blocking IO sensory signals.  Even though blocking 

glutamate in the IO does block somatosensory responses, this treatment also reduces the 

firing rate of the IO (Lang, 2001).  Interestingly, even this relatively modest reduction of IO 

firing rate still has a major non-specific effect on cerebellar nuclear output neurons – it 

silences them (Zbarska et al, 2007; 2008).  These findings suggest that successfully testing 

IO signal function requires methods that block IO US signals while compensating for tonic 

changes in the cerebellum.  We hypothesized that the negative side effects on network 

performance caused by blocking glutamate neurotransmission could be mitigated by 

targeting GABA receptors to disinhibit the IO.  Toward this end, we designed experiments 

using combined drug injection protocols that would block glutamate signaling in the IO 

while concomitantly restoring IO spontaneous neuronal activity to a near-normal level.     

As an initial step in that direction, we examined the effects of an uncompensated 

glutamate antagonist in the IO on CR acquisition.  The present study utilized a “second” 

conditioning protocol.  Rabbits were first trained using a tone CS until they reached an 

asymptotic level of CRs.  Following tone training, injections of the glutamate antagonist -D-

Glutamylglycine (DGG) were administered to the IO.  The advantage of this experimental 
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design is that it provides a functional test for DGG injections, which at the correct location 

and in the proper dose abolishes previously learned CRs.  Following the DGG mapping 

experiment, rabbits underwent training using a weak airpuff to the vibrissal pad (vCS) while 

blocking IO glutamate.  Similar to tone-evoked CRs, vCS-evoked CRs are cerebellum-

dependent (Carrel et al., 2012).  In addition, the rapid acquisition of CRs using the vCS 

reduces the duration of training, which correspondingly reduces the likelihood of a possible 

drug injection failure during multiple drug administrations.  Due to the cumulative nature of 

CR acquisition, training sessions cannot be repeated, so one compromised injection that fails 

to block CR expression could invalidate the experiment. 

We hypothesized that blocking glutamate neurotransmission in the IO should prevent 

acquisition of new CRs because IO US signals will be blocked and also because of the IO 

manipulation-induced cerebellar tonic malfunction.  These tonic changes are accompanied by 

a complete suppression of interposed nuclear activity (Zbarska et al., 2007; 2008), which 

when induced by direct IN inactivation is known to block learning (Krupa, Thompson, & 

Thompson, 1993).  Here, we report that contrary to our expectations, injections of DGG in 

the IO that reliably abolished previously learned tone-evoked CRs did not prevent acquisition 

of CRs to the vCS.  These findings indicate that the mechanism of CR acquisition is 

extremely robust because it can still effectively function with IO US signals blocked (or at 

minimum severely diminished) and in the presence of IO DGG-induced cerebellar tonic 

malfunction.  

3.3 Materials and Methods 

3.3.1 Subjects 
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Experiments were performed on 12 male New Zealand White Rabbits (Harlan; 

Indianapolis, IN) weighing 2.5–3.0 kg (3–4 months old at time of surgery).  Rabbits were 

housed individually on a 12-hour light/dark cycle and provided food and water ad libitum.  

All experiments were performed in accordance with the National Institutes of Health's 

“Principles of Laboratory Animal Care” (publication No. 86-23, revised 1985), the American 

Physiological Society's “Guiding Principles in the Care and Use of Animals,” and the 

protocol approved by Iowa State University's Animal Care and Use Committee. 

3.3.2 Surgery 

Surgical implantations were performed using aseptic techniques on naïve rabbits 

anesthetized with a mixture of ketamine (50 mg/kg), xylazine (6 mg/kg) and acepromazine 

(1.5 mg/kg).  The head was secured in a stereotaxic apparatus with lambda positioned 1.5 

mm ventral to bregma.  After exposing the skull and affixing three stainless steel anchor 

screws, a stainless steel injection guide tube (27-gauge thin-wall) was implanted 

stereotaxically targeting the dorsal aspects of the right IO (((0.69x + 4.5) - x) rostral from 

lambda, x being the horizontal distance between bregma and lambda in mm; 1.0 mm lateral; 

and 23.4 mm ventral from lambda).  In order to protect its patency, a 33-gauge stainless steel 

stylet was inserted in the guide tube between experiments.  The guide tube, anchor screws, 

and a small Delrin block designed to accommodate an airpuff delivery nozzle and eyeblink 

sensor were secured in place with dental acrylic.  All animals were treated with antibiotics 

for 5 days while recovering from surgery. 

3.3.3 Training procedures 



www.manaraa.com

59 

 

  

 

 Prior to surgery, rabbits were adapted to a restraint box (Plas-Labs Inc., Lansing, MI) 

inside a sound-attenuating chamber for 30 min on two consecutive days.  After recovery 

from surgery, rabbits were given one additional day of box adaptation.  Box-adapted rabbits 

were assigned to either the experimental or control group and conditioned using the delay 

classical conditioning paradigm until they reached ≥ 90% conditioned responses (CRs) for 3 

consecutive training days.  The initial conditioned stimulus (CS) was a 450-ms, 85-dB, 1-

kHz tone, superimposed on a 70-dB white noise background.  The tone CS co-terminated 

with a 100-ms, 36-psi (at the source) unconditioned stimulus (US) directed at the left cornea.  

The inter-stimulus interval was 350 ms and the inter-trial interval varied pseudorandomly 

between 15-25 sec.  Each training session consisted of 100 paired trials per day.   

3.3.4 Injection procedures and acquisition experiments 

 Intra-cranial microinjections were delivered using a 33-gauge stainless steel injection 

needle that was connected to a 10-µl Hamilton syringe (Hamilton Company, Reno, NV) via 

transparent Tygon tubing.  The Tygon tubing was first filled with ultra-purified water, then a 

small air bubble was pulled into the injection needle, followed by the drug being drawn into 

the tubing.  The movement of the bubble was used to monitor the volume of drug being 

injected relative to gradation marks located on the tubing.  An AMPA/kainate and NMDA 

receptor antagonist,-D-Glutamylglycine (DGG, Tocris Bioscience, USA), was dissolved in 

artificial CSF (aCSF) and its pH was adjusted to 7.4 ± 0.1.  The injections were performed 

manually at a rate of 0.25 µl/min.     

 Determining IO injection sites. In the first section of the present study, rabbits were 

subjected to functional mapping sessions in which they were injected with DGG (0.5 µl,100 
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nmol/µl) to determine the precise location and amount of DGG required to quickly abolish 

previously learned tone-evoked CRs.  The injection needle was inserted in the intra-cranial 

guide tube before starting the experiment.  Rabbits were presented with 40 pre-injection trials 

to ensure there were no effects on CR performance due to needle insertion.  Following the 

drug injection, an additional 160 post-injection trials were presented to the rabbit.  In the first 

mapping experiment, DGG was injected at a depth that corresponded to the tip of the 

injection guide tube.  Subsequent DGG injections were given every 20 trials until we 

observed a drug effect or a maximum of 2 µl had been injected.  If no drug effect on CR 

incidence was observed, the injection needle was advanced ventrally an additional 0.5 mm 

the following day and the mapping session was repeated.  This daily advancement was 

performed until DGG injections completely abolished CRs or until the needle had reached 

the base of the skull.  The volume required for maintenance of DGG-induced abolition for 

the 160 post-injection trials ranged from 0.5 µl – 2.0 µl.  

 vCS acquisition training. After determining the effective injection site for DGG to 

abolish tone-evoked CRs, the main part of the study commenced.  This began with 

calibration of the 450-ms weak airpuff CS directed at rows B and C of the left mystacial 

vibrissae (vCS) that would be used for the acquisition protocol.  The strength of this CS was 

individually calibrated for each rabbit (2-20 psi) to an intensity that was just below the 

threshold for eliciting an alpha response (for a more detailed description, see Carrel et al., 

2012).  Once the intensity of the vCS was determined, the acquisition experiment began.  

This part of the study entailed three days of acquisition with 100 paired vCS-US trials per 

day.  Each vCS acquisition training session started with the injection needle inserted, 
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followed by 10 tone CS-US presentations to test for possible needle insertion effects. The 

experimental group received IO DGG injections prior to each vCS acquisition session and 

the control group received IO vehicle injections.  Rabbits were injected with double the 

volume of DGG that was needed to abolish CRs in the mapping experiment.  This same 

volume was administered in vehicle injections. After a waiting period equivalent to the 

previously established latency for DGG-induced CR abolition, paired tone CS-US trials were 

resumed to confirm DGG-induced abolition of previously learned tone-evoked CRs.  During 

these post-injection tone trials, CRs were considered abolished when no more than 1 CR per 

10-trial block was present.  In rare instances, an additional DGG injection was given to 

insure complete abolition of CRs.  Once CRs were abolished, acquisition training using the 

vCS began.  The vCS acquisition sessions were divided into blocks of 10 trials consisting of 

9 vCS-US trials and 1 tone CS-US trial.  These tone trials represent probe trials presented to 

assess whether previously learned tone CS-evoked CRs remained reliably abolished 

throughout the whole training session.  These procedures were repeated in all vCS training 

sessions.   

 Retention test. Following 3 days of vCS acquisition, rabbits were given one day of 

rest to recover from the DGG effects.  One day after resting, subjects were given a retention 

test.  The retention test consisted of 40 vCS-alone trials to assess whether any learning 

occurred during the previous training under the influence of IO DGG.  Immediately 

following the retention test, rabbits were trained in daily sessions of 100 paired vCS-US trials 

until they reached an asymptotic level of responding for 3 days.   

3.3.5 Data recording and analysis 
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 Movements of the eyelids were recorded using a wide field-of-view infrared sensor 

that measures the amount of infrared light reflected from the eye and peri-orbital region 

(Ryan et al., 2006).  The output of the sensor was amplified, digitized (25 kHz, 12-bit A/D 

converter), and stored using a custom-made data acquisition system.  An infrared video 

system installed in the experiment chamber was used to monitor behavior of the rabbits and 

for positioning the infrared sensor.    

Eyeblink data were acquired starting 250 ms before onset of the CS and ending 800 

ms beyond the US onset for a total of 1400 ms in each trial.  Eyeblink responses were 

analyzed offline for the presence of alpha responses, CRs, and URs, each defined by their 

onset latencies.  An alpha response was classified as any response up to 80 ms after CS onset, 

a CR as an eyelid movement occurring from 81 ms after CS onset up to the US onset, and a 

UR as any response after the US onset.  Trials containing spontaneous eyeblinks before CS 

onset were removed from further analyses.  The threshold for eyelid movements was set to 5 

standard deviations of the baseline signal noise, which corresponded to approximately a 0.15 

mm decrease in eyelid aperture.  Mean CR incidence and latency were calculated for 

consecutive blocks of 10 trials.  The data were pooled from individual rabbits and 

statistically analyzed using repeated measures ANOVA followed by individual and 

simultaneous contrast analyses.  All group data were reported as mean ± standard error of the 

mean, with an alpha level = 0.05 for declaring significance.   

3.3.6 Histology 

 After all experiments were completed, rabbits were deeply anesthetized with a 

cocktail of ketamine (100 mg/kg), xylazine (12 mg/kg), and acepromazine (3 mg/kg).  



www.manaraa.com

63 

 

  

 

Injection sites were marked by injecting 0.75-1.0 µl of tissue-marking dye.  Rabbits were 

transcardially perfused with 1 L of phosphate-buffered saline followed by 1 L of tissue 

fixative (10% neutral-buffered formalin).  Excised brains were stored in a solution of 30% 

sucrose and 10% formalin.  Brains were sectioned coronally in 50-µm slices on a freezing 

microtome.  Subsequently, sections were mounted on gelatin-coated slides, dried, and stained 

with luxol blue and neutral red.  Injection site locations were identified using bright light 

microscopy and plotted on standardized sections of the rabbit cerebellum.  

3.4 Results 

Overall, blocking IO glutamatergic signals while training rabbits to a vibrissal CS did 

not block learning as demonstrated by the post-acquisition retention test.  This was surprising 

because during the acquisition sessions, CR expression was abolished.  In agreement with 

this result, the vCS rabbits showed a near asymptotic level of CRs on Day 1of post-

acquisition training. 

A total of 12 rabbits were included in the acquisition experiments. One rabbit was 

excluded from the study due to consistent URs to the lowest intensities of the vCS.  Another 

rabbit was euthanized due to his health condition. After histological analysis, one additional 

subject was excluded from the results due to a misplaced implant. Thus, five animals were 

included in the experimental group and four in the control group.  The histological 

reconstruction of IO injection sites for the remaining 9 animals revealed that all subjects had 

their injections administered either directly in or proximal to the rostral part of the dorsal 

accessory IO (Fig. 1).  

3.4.1 The IO mapping tests - effects of DGG on tone CS-evoked CRs 
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 Determining the optimal depth for IO injections and the dose of DGG required for 

blocking IO signals in the eyeblink-related area of the IO was conducted in rabbits pre-

trained with the tone CS. The suppression of tone CS-evoked CRs served as a functional 

index of an adequate DGG injection.  Prior to the DGG injection, all rabbits exhibited well 

timed, large amplitude CRs to the tone CS (Fig. 2A).  After the DGG administration, CR 

performance quickly deteriorated and CRs were abolished for the remainder of the   
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Figure 1.  Locations of injection sites in the inferior olive (IO) for the experimental group 

(black stars) and the control animals (black circles).  The identified sites for individual 

animals were transferred to a set of standardized coronal sections of the rabbit medulla 

arranged in rostral-to-caudal order with “A” being the most rostral.  The numbers on the 

lower right side of each section represent the anterior-posterior distance in millimeters of 

each section as measured from the rostral part  of the dorsal accessory IO.  All injection sites 

were located in or adjacent to the rostral portion of the inferior olivary complex.  IOD, dorsal 
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accessory inferior olive; IOM, medial inferior olive; IOPr, principal inferior olive; Sp5N, 

spinal trigeminal nucleus; sp5, spinal trigeminal tract; Pr, prepositus hypoglossal nucleus; 

7N, facial nucleus; icp, inferior cerebellar peduncle; MVe, medial vestibular nucleus; SolN, 

solitary nucleus; Amb, ambiguous nucleus; DCN, dorsal cochlear nucleus.    

 

experiment (Figs. 2A, 3). This suppression of CR incidence was significant when compared 

to the pre-injection performance (F1,14 = 1574.2, p < 0.0001) or to control injections of 

vehicle (F1,14 = 406.3, p < 0.0001).  The effect of DGG on CR incidence in the control and 

experimental groups was similar (Fig. 3) (F1,14 = 0.96, p = 0.34).  This data shows that 

blocking glutamate neurotransmission in the IO with DGG reliably abolished tone CS-

evoked CRs.injection. 

3.4.2 CR acquisition while blocking glutamatergic neurotransmission in the IO  

 After finding the optimal IO injection location and dose of DGG required to abolish 

previously learned CRs, the acquisition experiment was conducted.  It is important to note 

that rabbits in the experimental group received a dose of DGG that was double the volume 

needed to abolish CRs during the IO mapping phase of the experiment.  This drug excess was 

used to increase the likelihood that all glutamate signaling in the eyeblink-related portions of 

the IO was indeed blocked.  During the acquisition phase of the study, rabbits were injected 

either with DGG or vehicle before each training session and trained to the vCS for three 

days.  This DGG treatment abolished CRs to both modalities of the CS.  Figures 4A and 4C 

show individual examples of eyeblink responses to the vCS on Day 3 of acquisition, 

contrasting the effects of DGG and aCSF.  The rabbit in the experimental group exhibited    
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Figure 2.  Individual examples from the same animal showing the effects of injecting DGG 

or vehicle in the IO on expression of tone CS-evoked CRs in the IO mapping part of the 

study.  Each experiment starts at the top and each blink trace represents one trial of the 200-

trial experiment.  Upward deflections of the trace between the vertical CS and US markers 

denote conditioned eyeblinks.  The timing of injections is shown by an arrow in each stack 

plot.  (A) The effect of DGG injected in the IO following 40 pre-injection trials.  DGG 

immediately abolished CRs and this effect lasted for the remainder of the experiment.  (B) 

Control experiment in which aCSF was injected in the IO.  The vehicle had no effect on CRs.   
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Figure 3.  Group data for tone CS-evoked CR incidence (± SEM) following mapping DGG 

(n = 5) or vehicle (n = 4) injections in the IO.  The dashed vertical line indicates the time of 

injection.  The abscissa represents blocks of 10 trials which are numbered separately for the 

pre- and post-injection periods. DGG injections in both the experimental group (black 

triangles) and control group (black squares) rapidly abolished CRs and CR expression did not 

recover until the end of the experiment.  Injections of vehicle had no effect on CR incidence.   
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no blinks to the vCS while the control rabbit had a high number of vCS-evoked CRs on Day 

3.  In the group data in Figure 5A, animals in the experimental group exhibited virtually no 

CRs during acquisition, while the control group showed a high rate of CR acquisition to the 

vCS.  In the tone CS probe trials, tone-evoked CR expression was completely abolished 

(Figs. 4B, 5B), indicating a major DGG effect during the entire acquisition experiment.  

Conversely, control rabbits consistently exhibited normally timed, tone-evoked CRs (Figs. 

4D, 5B).  The consistent effect of DGG on vCS-related CR expression is shown in Figure 

6A.  Over the course of all three acquisition sessions, the frequency of blinks in the CS-US 

interval in this rabbit did not exceed the spontaneous eyeblink rate, and the small 

spontaneous blinks were inter-mixed with occasional slight eyelid movements (e.g., several 

of the last trials on day 3 in Fig. 6C).  Control rabbits exhibited rapid CR acquisition 

culminating with an asymptotic CR performance by Day 3 (Fig. 4).  Rabbits trained while 

being injected with DGG showed a significantly lower number of responses on all three days 

(e,g,. Day 1: F1, = 22.5, p = 0.002) compared to the control group’s rapid rise to asymptotic 

performance. 

3.4.3 Retention test 

Following acquisition, a no-injection, 40-trial, vCS-alone retention test was 

performed.  In this test, the experimental group exhibited a surprisingly high incidence of 

vCS-evoked CRs (35%), providing unequivocal evidence that learning occurred during the 

DGG phase of acquisition training (Fig. 5A).  An individual example of CR performance in 

the retention test for a rabbit in the experimental group is shown in Figure 6D.  This animal 
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exhibited a high level of well-timed CRs to the vCS throughout the retention test and it 

showed signs of extinction towards the end of the session.  One of the five experimental 

rabbits was extremely sensitive to the vCS and for the acquisition training, we had to select 

the lowest vCS intensity available in our airpuff delivery system to prevent vCS-evoked URs.  

This rabbit failed to show high CR incidence in the retention test, but exhibited above-normal 

CR incidence during each day of post-acquisition training.  While rabbits in the control group 

exhibited a higher mean level of CRs during retention, individual performances varied such 

that the two groups were not statistically different (F1,7 = 4.38, p = 0.075).  
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Figure 4.  Individual examples of vibrissal and tone CS trials from Day 3 of acquisition with 

DGG or vehicle injections in the IO.  (A) Example showing a 100-trial vibrissal CS (vCS) 

acquisition experiment following a DGG injection .  The rabbit was exhibiting no CRs on 

this last day of acquisition.  (B) The probe tone CS trials delivered to the rabbit during the 

same acquisition session as in (A).  The DGG injection prevented expression of previously 
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learned CRs.  (C) A stack plot of eyeblinks of a control animal that was injected with vehicle.  

At this stage of acquisition, the control rabbit expressed robust CRs. (D) Eyeblinks in the 

tone CS trials presented in the same session as in (C).  In these trials, the control animal 

shows well-timed CRs to the previously learned tone CS.  

A B

0

20

40

60

80

100

Day 1 Day 2 Day 3 RET Day 1 Day 2 Day 3 Day 4

C
R

 In
ci

de
nc

e 
(%

  
S

E
M

)

Acquisition 

Experimental (n = 5)

Control (n = 5)

Post-injection 

0

20

40

60

80

100

PI1 PA1 AQ1 PI2 PA2 AQ2 PA3 PI3 AQ3

C
R

 In
ci

de
nc

e 
(%

  
S

E
M

)

Acquisition phase

Experimental
(n = 5)
Control (n = 4)

 

Figure 5.  Group effects on vCS-evoked CR incidence (± SEM) during acquisition, retention 

test (RET) and post-acquisition training for the experimental group (diamonds, n = 5) and 

control group (squares, n = 4).  (A) DGG injections suppressed expression of any vCS-

evoked CRs during acquisition but did not block learning as shown by the presence of 

relatively high CR indidence in the  retention test.  The control group acquired CRs to the 

vCS quickly and CR expression reached asymptote by Day 2.  Both groups showed 

assymptotic levels of CR incidence from the first day of the no-injection, post-acquisition 

training.  (B) Tone CR incidence during the 3 days of acquisition.  Both groups showed high 

levels of CRs during the pre-injection (PI) trials.  DGG injections in the experimental group 
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blocked expression of tone-evoked CRs in both the pre-acquisition (PA) and acquisition 

(AQ) trials.  Vehicle injections in  the control group had no effect on expression of tone-

evoked CRs. 
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Figure 6.  A complete printout of all eyeblinks generated by one of DGG-injected 

experimental rabbit during three days of vCS training and in the retention test.  (A) With the 

exception of several spontaneous responses, DGG in this rabbit suppresses expression of CRs 

throughout the acquisition phase of the study.  (B) In spite of showing no CRs during 

acquisition, the same animal exhibited well-formed vCS-evoked CRs in the vCS-alone 

retention test.  Dashed vertical line shows where the onset of US would normally occur in a 

paired stimuli experiment. 

    

3.4.4 Post-acquisition training 



www.manaraa.com

72 

 

  

 

 The retention test for both the experimental and control groups showed no deficits in 

learning the association or any lingering effects from the previous day’s DGG injection.  

Consistent with learning having occurred during the DGG acquisition phase, the learning 

curve of the experimental group was indistinguishable from controls (Figure 5A) (group F1,7 

= 0.036, p = 0.85 and group*day F2,14 = 0.81, p = 0.46).       

3.5 Discussion 

 The present study tested whether interfering with IO US signals by blocking 

glutamate neurotransmission in the IO would affect CR acquisition to a vibrissal CS.  As 

expected, microinjections of DGG prevented expression of CRs to both the vCS and to the 

previously learned tone CS (Figs. 3 & 5).  Although blocking glutamate neurotransmission in 

the IO suppressed CRs to either CS modality during acquisition, rabbits exhibited CRs to the 

vCS in the retention test, when no drugs were injected and the IO thus operated normally.  

This shows rabbits were able to acquire CRs even though IO US signals to the cerebellum 

were either blocked or at least severely suppressed.        

 Prevailing concepts of eyeblink conditioning postulate that the IO provides the 

intermediate cerebellum with a teaching US signal which is required for CR acquisition and 

maintenance (Thompson, 1986; De Zeeuw and Yeo, 2005). In agreement with this notion, 

electrophysiological studies demonstrated that the dorsal accessory olive responds to the 

trigeminal US (Gellman et al., 1983; Weiss et al., 1993). Further confirmation of the IO-

dependent cerebellar learning hypothesis required showing that blocking the IO US signals 

would prevent CR acquisition, and that it would also lead to extinction of previously learned 

CRs. Several experiments previously addressed these issues.    
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Seemingly supporting IO US signal-dependent cerebellar learning, IO lesions or temporary 

inactivation prevented CR acquisition (McCormick et al., 1985; Yeo et al., 1986; Welsh and 

Harvey, 1998).  Results of studies blocking IO signals in trained animals were less 

conclusive. While Yeo et al. (1986) found that IO lesions abolished previously learned CRs 

immediately, McCormick et al. (1985) reported that IO lesions produce not immediate, but 

rather gradual, extinction-like CR suppression. Furthermore, it has been shown that 

reversibly blocking glutamate-mediated IO US signals in trained rabbits produced delayed, 

extinction-like CR suppression (Medina, Nores, and Mauk, 2002).  

Our recent electrophysiological examination of blocking task-related IO signals in 

trained rabbits casted serious doubts on these early studies. Contrary to predictions of the 

cerebellar learning hypothesis, we found that blocking IO signals with microinjections of 

muscimol (GABA agonist), DGG or NBQX (fast glutamate receptor antagonists) invariably 

abolished CRs (Zbarska et al., 2007; 2008). Importantly, our single-unit recording of 

neuronal activity in deep cerebellar nuclei unveiled the neurophysiological mechanism of CR 

abolition. In agreement with early reports of tonic effects of IO lesions (Colin et al., 1980; 

Montarolo et al., 1982; Batini et al., 1985), we found that these treatments somewhat 

counter-intuitively suppressed the neuronal activity in cerebellar interposed nuclei.  Since 

direct suppression of cerebellar nuclear activity with muscimol or lidocaine is known to 

block CR expression (Bracha et al., 1994; Welsh and Harvey, 1991), we concluded that the 

IO manipulation-induced suppression of cerebellar nuclear activity was a direct cause of CR 

abolition. These findings demonstrated that due to their side-effects (i.e. non-specific 
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suppression of cerebellar nuclear activity), IO lesions or blocking IO neurotransmission are 

invalid methods for testing the functional significance of IO signals in eyeblink conditioning.   

It became clear that future investigations of the IO’s contribution to eyeblink 

conditioning will require new approaches that not only block IO US signals, but also 

minimize possible effects on the tonic activity of cerebellar circuits (for review see Bracha et 

al., 2009). Toward this end, we started to develop combined injection protocols which would 

block IO task-related signals while maintaining near-normal cerebellar activity (Zbarska and 

Bracha, 2012; Zbarska et al., 2009). Results reported here represent the first step in our 

attempt to establish a baseline effect of blocking glutamate-mediated IO signals during CR 

acquisition, without compensating for associated shifts in cerebellar spontaneous activity. We 

hypothesized that rabbits trained in these conditions would not acquire CRs because DGG 

will render cerebellar circuits dysfunctional and/or because it will block IO US signals that 

are presumably required for learning. Surprisingly, we found that injections of DGG did not 

prevent CR acquisition. The simplest explanation for this finding is that glutamate-mediated 

IO US signals are not required for CR acquisition. This conclusion contradicts one of the 

major tenets of the cerebellar learning hypothesis in which IO US signals are pivotal for 

learning. Notably, this finding does not preclude cerebellar learning in general. While IO US 

signals might not be essential, other evidence suggests that the intermediate cerebellum 

indeed plays a role in CR acquisition (e.g. Bracha et al., 1998; Kellet et al., 2010).  If so, the 

underlying mechanism would have to be remarkably robust to withstand IO DGG-induced 

shifts in the spontaneous activity of the cerebellar cortex and nuclei, and it would have to rely 

on mossy fibers for both the CS and US information. 
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If glutamate-mediated IO US signals are not required for CR acquisition, then why 

did IO lesions (McCormick et al., 1985; Yeo et al., 1986,) and inactivation with lidocaine 

(Welsh and Harvey, 1998), prevent learning in previous studies? The most likely explanation 

is that silencing the IO via lesioning or inactivation generates non-specific effects on 

cerebellar physiology that are more disruptive than selectively blocking IO glutamate. 

Specifically, it is known that neurons in the IO are spontaneously active, producing firing 

rate of 1-2 spikes per second (Lang, 2001). Inferior olivary lesions and inactivation both 

block completely not only IO task-related signals, but also spontaneous climbing fiber 

activity. Blocking IO glutamate is less intrusive because even though it blocks the IO’s 

responses to sensory inputs, it reduces, but does not eliminate the IO’s spontaneous firing 

(Lang, 2001). Thus, it is possible that in the present experiment DGG preserved residual IO 

spontaneous activity.  The decrease in IO activity was sufficient to suppress IN activity, via 

tonic interactions, enough to prevent CR expression. However, it was not severe enough to 

shift the activity in cerebellar eyeblink-related areas beyond the physiological range required 

for learning.     

Before rejecting the IO’s role in CR acquisition, alternate interpretations should be 

considered. It is possible that DGG injections did not eliminate all IO US signals and that the 

residual US-evoked IO activity was sufficient to support CR acquisition. However, this 

scenario does not seem likely. The placement of injection sites was centered on the rostral 

part of the dorsal accessory olive, which is known to contain the representation of the contra-

lateral eye region (Weiss et al., 1993). One of the advantages of our experimental design was 

that it involved functional tests of DGG injection effectiveness. This allowed us to reduce the 
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likelihood of an incomplete block of IO US signals by implementing several precautionary 

steps. Specifically, to assure drug infusion into locations relevant to the eyeblink, we selected 

only sites where small DGG injections abolished previously learned, tone CS-evoked CRs 

(Zbarska et al., 2007). Then, to assure a complete and lasting drug effect during training, we 

doubled the DGG dose required for CR abolition and we verified its effect on tone CS-

evoked CRs before initiating each acquisition session.  Then, throughout each acquisition 

session, we confirmed the lasting drug effect using recurring tone CS probe trials to verify 

the abolition of CR expression. All these precautions confirmed that DGG injections were 

administered into the eyeblink representation area of the IO and that the resulting block of 

glutamate neurotransmission was strong enough to suppress the IO and consequently the IN 

activity to an extent rendering rabbits incapable of generating both previously learned and 

newly acquired CRs. However, it should be noted that these functional tests are only indirect 

measures of the extent to which DGG blocked IO US signals. Thus, we can’t exclude that CR 

expression is more vulnerable to DGG-induced shifts of tonic cerebellar activity. 

Furthermore, while in this functional state which disabled CR expression, we can’t exclude 

that the cerebellum was still receiving residual IO US signals that were sufficient to support 

learning. Even though this seems unlikely, future electrophysiological experiments will be 

required to exclude or confirm this critical alternate interpretation.      

Another possible contributing factor enabling rabbits to acquire CRs in the present 

study could be the CS modality.  We utilized a weak vibrissal airpuff CS because it produces 

faster acquisition of cerebellum-dependent CRs than traditional CS modalities such as a tone 

(Carrel et al., 2012).  An accelerated learning rate afforded us the capability to reduce the 
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number of DGG injections and thus reduce the likelihood of an injection failure adversely 

affecting the experiment. The relative downside of using the non-traditional vCS is that we 

can’t exclude that learning different CS sensory modalities is differentially dependent on IO 

signals. Information about the CS, whether auditory or trigeminal, is sent to the lateral 

pontine nuclei and then on to the eyeblink-related areas of the cerebellum (Halverson and 

Freeman, 2010).  However, the sensory trigeminal nuclei also have direct projections to the 

cerebellum (Van Ham and Yeo, 1992).  These direct projections could perhaps contribute to 

the faster CR acquisition observed when using the vCS and also to the ability of animals to 

acquire CRs even while blocking IO inputs. This possibility could be easily tested by 

blocking IO glutamate during eyeblink conditioning to the tone CS.   

An additional noteworthy finding was the one rabbit that did not learn during the 

acquisition protocol.  Since the placement of his implant was not significantly better than in 

rabbits that learned and because the dose of DGG was not higher than other animals, it is not 

likely that this subject’s failure to learn was related to better penetration of the IO with the 

drug.  Also, a possible injury of the IO does not explain the lack of learning in this animal 

because it acquired CRs quickly during post-acquisition training. Since this animal was 

extremely sensitive to the vCS and as a consequence it was exposed to the lowest CS 

intensity among all of the subjects in this study, we presume that his failure to acquire under 

DGG was not related to the drug, but to the low intensity of CS.    

 The present study made two important contributions. First, it confirmed previous 

observations that, contrary to expectations of the cerebellar learning hypothesis, blocking 

glutamate neurotransmission in the IO abolishes previously learned CRs rather than inducing 
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their extinction. The second and more important finding is that blocking IO task-related 

signals either completely, or at least enough to suppress CR expression, did not prevent 

acquisition of CRs to the vCS. This finding illustrates a remarkable resiliency of the learning 

mechanisms operating in spite of the cerebellum being in an abnormal functional state. 

Notwithstanding the alternative interpretations, the most parsimonious, and admittedly the 

most provocative, interpretation of the current data is that glutamate-mediated IO signals are 

not needed for CR acquisition. This conclusion portends exciting implications for possible 

mechanisms of eyeblink-related cerebellar learning. Confirming or falsifying this proposition 

will require careful electrophysiological tests designed to determine whether utilized doses of 

DGG are indeed capable of blocking completely all IO US signals. The general validity of 

this conclusion will also require testing whether CR acquisition to other CS modalities is 

similarly insensitive to blocking task-related inferior olivary signals. 
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CHAPTER 4: EFFECTS OF BLOCKING GLUTAMATE 

NEUROTRANSMISSION IN THE INFERIOR OLIVE ON EYEBLINK 

CONDITIONING-RELATED INFERIOR OLIVARY SIGNALS – A 

PILOT STUDY. 

 
A.J. Carrel8,9, G.D. Zenitsky8, and V. Bracha8 

 

4.1 Abstract 

A popular version of the cerebellar learning hypothesis assumes that the IO provides 

the cerebellum with a US teaching signal that is required for CR acquisition.  Our previous 

experiments (Chapter 3) seriously challenged this notion by showing that rabbits could 

acquire CRs when IO US sensory signals were presumably blocked by the glutamate 

antagonist DGG when applied to the IO.  Concluding that IO US signals are indeed not 

required for eyeblink conditioning requires showing explicitly that IO DGG injections that 

abolish CRs also block IO US signals. 

 To examine this issue, trained rabbits were injected in the IO with the glutamate 

antagonist DGG and ef10fects of this treatment on the incidence of IO signal-triggered 

Purkinje cell complex spikes were examined.  In this pilot experiment, we found that CR-

abolishing DGG injections blocked all complex spike activity in eyeblink-related Purkinje 

                                                 
8 Department of Biomedical Sciences, Iowa State University. 

9 Primary researcher. 
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cells.  This finding suggests that DGG suppressed both the task-related IO signals and the 

spontaneous activity of IO neurons.  These data further support the notion that contrary to the 

central postulate of the cerebellar learning hypothesis, IO US signals are not required for CR 

acquisition. 

4.2 Introduction 

Axons from neurons in the IO are the only source of climbing fibers that synapse onto 

cerebellar Purkinje cells and cerebellar nuclei (Desclin, 1974).  These climbing fibers contain 

a unique pattern of innervation in that Purkinje cells receive input from only one climbing 

fiber and the climbing fiber makes several synaptic contacts on the Purkinje cell dendrites as 

it ascends towards the distal ends of the dendrites.  Climbing fiber activation produces a 

distinct burst of high-frequency spikes in Purkinje cells called the complex spike (Eccles et 

al., 1966).    

 The cerebellar learning hypothesis proposes that IO US signals, which are expressed 

in the cerebellar cortex as US-correlated complex spikes, are required for CR acquisition 

(Mostofi et al., 2010).  Contrary to this popular belief, our acquisition studies in Chapter 3 

show that even though microinjections of the glutamate antagonist -D-Glutamylglycine 

(DGG) in the IO block US signals, they did not block CR acquisition.  Although rabbits did 

not express CRs during the acquisition sessions, we could not exclude that our DGG 

injections did not completely block IO task-related sensory signals and the residual signals 

were sufficient to support learning.   

 To measure directly how blocking IO glutamate affects IO signals, we initiated a 

preliminary study in which we measured the incidence of complex spikes in the cerebellar 
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cortex before and after DGG microinjections in the IO.  The main objective of this study was 

to obtain preliminary data that could be used in future grant applications.  Rabbits were 

implanted with an array of microelectrode guide tubes in lobule HVI of the cerebellar cortex, 

which contains the eyeblink representation (Yeo et al., 1985, Mostofi et al., 2010).  We 

hypothesized that the amounts of DGG that were injected during our acquisition experiments 

(see Chapter 3 Methods) will completely suppress US-triggered complex spikes in eyeblink-

related Purkinje cells.  The preliminary data presented here are consistent with this 

prediction.   

4.3 Methods 

4.3.1 Subjects 

Experiments were performed on two male New Zealand White Rabbits (Harlan; 

Indianapolis, IN) weighing 2.5–3.0 kg (3–4 months old at time of surgery).  Rabbits were 

housed individually on a 12-hour light/dark cycle and provided food and water ad libitum.  

All experiments were performed in accordance with the National Institutes of Health's 

“Principles of Laboratory Animal Care” (publication No. 86-23, revised 1985), the American 

Physiological Society's “Guiding Principles in the Care and Use of Animals,” and the 

protocol approved by Iowa State University's Animal Care and Use Committee. 

4.3.2 Surgery 

Surgical implantations were performed using aseptic techniques on naïve rabbits 

anesthetized with a mixture of ketamine (50 mg/kg), xylazine (6 mg/kg) and acepromazine 

(1.5 mg/kg).  The head was secured in a stereotaxic apparatus with lambda positioned 1.5 

mm ventral to bregma.  After exposing the skull and affixing three stainless steel anchor 
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screws and a silver ground screw, a stainless steel injection guide tube (27-gauge thin-wall) 

was implanted stereotaxically targeting the dorsal aspects of the right IO ((0.69x + 4.5) – x) 

rostral from lambda, x being the horizontal distance between bregma and lambda in mm; 1.0 

mm lateral; and 23.4 mm ventral from lambda).  An array of 3 guide tubes was also 

stereotaxically implanted targeting the medial aspect of cerebellar lobule HVI (((0.69x + 5.3) 

– x) rostral from lambda in mm; 1.0 mm lateral; and 9.75 mm ventral from lambda).  In order 

to protect the patency of the guide tubes, a 33-gauge stainless steel stylet was inserted each 

guide tube between experiments.  The guide tubes, anchor screws, silver ground screw, a 

miniature ground connector and a small Delrin block designed to accommodate an airpuff 

delivery nozzle and eyeblink sensor were all secured in place with dental acrylic.  All 

animals were treated with antibiotics for 5 days while recovering from surgery. 

4.3.3 Training procedures 

 Prior to surgery, rabbits were adapted to a restraint box (Plas-Labs Inc., Lansing, MI) 

inside a sound-attenuating chamber for 30 min on two consecutive days.  After recovery 

from surgery, rabbits were given one additional day of box adaptation.  Box-adapted rabbits 

were conditioned using the delay classical conditioning paradigm until they reached ≥ 90% 

conditioned responses (CRs) for 3 consecutive training days.  The conditioned stimulus (CS) 

was a 450-ms, weak airpuff directed at rows B and C of the left mystacial vibrissae (vCS).  

The strength of the CS was individually calibrated for each rabbit to an intensity just below 

the threshold that elicited an alpha response (for a more detailed description, see Carrel et al., 

2012).  The CS was delivered using a Precision Pressure Regulator Type 10LR (Bellofram 

Corporation, Newell, WV).  The vCS co-terminated with a 100-ms, 36-psi (at the source) 
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unconditioned stimulus (US) directed at the left cornea.  The inter-stimulus interval was 350 

ms and the intertrial interval varied pseudorandomly between 15-25 sec.  Each training 

session consisted of 100 paired trials per day.   

4.3.4 Injection procedures 

 Microinjections were delivered utilizing a 33-gauge stainless steel injection needle 

connected to a 10-µl Hamilton syringe (Hamilton Company, Reno, NV) via transparent 

Tygon tubing.  The Tygon tubing was initally filled with ultra-purified water, then a small air 

bubble was pulled into the injection needle, followed by the drug being drawn into the 

tubing.  The movement of the bubble was used to monitor the volume of drug being injected 

relative to gradation marks located on the tubing.  An AMPA/kainate and NMDA receptor 

antagonist,-D-Glutamylglycine (DGG, Tocris Bioscience, USA), was dissolved in artificial 

CSF (aCSF) and its pH was adjusted to 7.4 ± 0.1.  The injections were performed manually at 

a rate of 0.25 µl/min.     

 In the first part of the study, IO functional mapping sessions were performed using 

injections of DGG (0.5 µl,100 nmol/µl) to ascertain the precise location and volume of DGG 

necessary to quickly abolish previously learned vCS-evoked CRs.  The injection needle was 

inserted in the guide tube before commencing the experiment.  Rabbits were given 40 pre-

injection trials to ensure there were no effects on CR performance due to needle insertion.  

Following the drug injection, an additional 160 post-injection trials were presented to the 

rabbit.  In the first mapping experiment, DGG was injected at a depth that paralleled the tip 

of the guide tube.  Subsequent DGG injections were given every 20 trials until we observed a 

drug effect or a maximum of 2 µl had been injected.  If there was no notable drug effect on 
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CR incidence, the injection needle was advanced ventrally an additional 0.5 mm the 

following day and the mapping session was repeated.  This daily advancement was 

performed until DGG injections completely abolished CRs or until the needle reached the 

base of the cranial cavity.  The volumes required for maintenance of DGG abolition for the 

post-injection trials ranged from 0.5 µl – 1.5 µl.   

4.3.5 Electrophysiology procedures 

Recording of complex spike activity in the cerebellar cortex was performed using a 

stainless steel electrode (1.5-5 MΩ, Frederick Haer Company, Bowdoinham, ME) inserted 

into one of the three guide tubes targeting lobule HVI.  Electrodes were advanced ventrally 

using a custom-made manipulator attached to the 3-guide tube array.  The electrode was 

advanced until a Purkinje cell exhibiting a complex spike to the CS and/or US was isolated.  

At that point, paired vCS-US trials were presented to the rabbit.  If the isolated unit was 

maintained through the pre-injection trials, DGG was injected in the IO and then paired trials 

and single-unit recording continued for the remainder of the experiment, which comprised 

the post-injection and recovery periods.    

4.3.6 Data recording and analysis 

 Movements of the eyelids were recorded as described in Chapter 3.  Single-unit 

signals from electrodes were pre-amplified with a FET-based preamplifier and then further 

amplified with a differential amplifier system (model 12 Neurodata System; Grass-

Telefactor, WestWarwick, RI).  The amplified and bandpass-filtered (300 Hz–3 kHz) signal 

was digitized (25 kHz/channel) using a custom data acquisition system, and was displayed 

and stored in 1400 ms epochs corresponding to individual trials.  Unit discrimination was 
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performed off-line using threshold detection followed by a cluster analysis of scatter plots of 

time and amplitude distances between the peak and valley of individual action potential 

waveforms.  The discriminated data were processed using custom software.  Raster and peri-

event histograms were constructed for each unit.  The criterion for identifying the recovery 

period was the behavioral reappearance of CRs.  In each histogram, the baseline firing rate 

(250 ms before CS onset) and the timing of significant excitatory and inhibitory changes 

were computed.  Cell responses were considered significant if modulation of the firing rate 

from the CS onset until the end of the trial exceeded the mean baseline tolerance limit for 

two consecutive 20 ms bins.  Tolerance limits were computed to capture 95% of the baseline 

distribution with a probability of 0.95. 

4.3.7 Histology 

 After all experiments were concluded, rabbits were deeply anesthetized with a 

cocktail of ketamine (100 mg/kg), xylazine (12 mg/kg), and acepromazine (3 mg/kg).  

Injection sites were marked by injecting 0.75 µl of tissue-marking dye.  Recording sites were 

marked by electrolytical deposition of iron from recording electrodes.  Rabbits were 

transcardially perfused with 1 L of phosphate-buffered saline followed by 1 L of tissue 

fixative (10% neutral-buffered formalin) and 1 L of of 10% potassium ferrocyanide in 10% 

formalin.  The potassium ferrocyanide allows electrodes to be marked by passing 10 µA 

anodal DC current through the electrode for 20 seconds.  Excised brains were stored in a 

solution of 30% sucrose and 10% formalin.  Brains were sectioned coronally in 50-µm slices 

on a freezing microtome.  Subsequently, sections were mounted on gelatin-coated slides, 

dried, and stained with ferrocyanide hydrochloride and neutral red.  Injection site locations 
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were identified using bright light microscopy and plotted on standardized sections of the 

rabbit cerebellum and medulla. 

4.4 Results 

Purkinje cell complex spikes (Fig. 1) were recorded in two rabbits.  Although we were able 

to obtain recordings of Purkinje cell complex spikes in both animals, we isolated stimulus-

induced complex spikes only in one rabbit. 

 

Figure 1.  An individual example of complex spike wave shapes recorded from a Purkinje 

cell in cerebellar lobulus HVI.   

 

Figure 2 illustrates the distribution of complex spikes in a Purkinje cell that was successfully 

held throughout a 265-trial experiment.  Typical for the IO firing rates, the pre-injection 

frequency of complex spikes was between 2-3 Hz.  On the background of this firing rate, the 

cell exhibited stimulus-related excitatory modulation.  In this particular case, this Purkinje 

cell responded with complex spikes to both the CS and US.  In fact, most recorded cells 
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responded to both the CS and US, which were of the same sensory modality.  Following the 

DGG administration, CRs were abolished as manifested by the shift of eyeblink onsets past 

the onset of the US.  In parallel to this behavioral effect, the complex spike firing almost 

completely ceased.  This is an interesting finding because previous experiments show that 

injecting another glutamate antagonist (NBQX) in the IO reduces but does not abolish 

complex spike firing (Lang 2001; 2002).  This effect lasted about 35 trials after which 

complex spikes began to recover.  In the case illustrated in Figure 2, responses to the vCS 

recovered first and this was followed by the spontaneous activity and eventually US response 

recovery.  The recovery of complex spike activity preceded the restoration of behavioral 

CRs.  

4.5 Discussion 

 This pilot study tested the effects of blocking IO glutamate neurotransmission with 

DGG on the conditioning-related complex spike activity of Purkinje cells.  Our experiments 

demonstrated the suitability of our recording technique for isolating conditioning-related 

complex spikes and for maintaining the isolation of recorded cells for the duration of the 

drug injection experiment.  Even though several recorded cells by no means represent the 

whole population of eyeblink-related cells, the acquired data demonstrated that in principle, 

IO DGG could completely suppress IO US signals – a result which, when combined with the 

outcome of acquisition experiments described in Chapter 3, reinforces the notion that IO US 

signals are not essential for eyeblink conditioning.  This conclusion will require further 

experimentation to accumulate a more representative sample of eyeblink-related Purkinje 

cells.  Also, these future experiments will have to focus on assessing the duration of the DGG 
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Figure 2. An example of the effects of DGG injections in the IO on complex spike activity in 

a cerebellar Purkinje cell.  The experiment consisted of 265 trials. (A) Raster plot of complex 

spikes in a Purkinje cell. The experiment starts at the top with each row representing one 

trial.  The blue square in each trial indicates onset of the eyeblink response for that particular 

trial.  Each black dot designates the occurrence of a recorded complex spike.  The cell 

responded with complex spikes following both the CS and US during pre-injection trials.  

Shortly after the DGG injection, CRs and complex spike activity were suppressed.  Complex 

spike responses to the vCS recovered first and this was followed by gradual recovery of 

spontaneous activity, responses to the US and eventually also behavioral CRs.   (B–D), Peri-
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stimulus histograms of the same Purkinje cell neuron constructed for 30 trials before the 

injection (B), for 115 post-injection trials when behavioral CRs were abolished (C), and the 

last 110 trials of recovery (D). Bin width for histograms in B–D is 20 ms. CS, conditioned 

stimulus onset; US, unconditioned stimulus onset. 

 

effects on PC complex spikes using doses of DGG that exceed those used in experiments 

described in the Chapter 3.  Ultimately, results of these future electrophysiological 

experiments will be essential for rejecting the role of IO in eyeblink conditioning or for 

designing more adequate tests of the cerebellar learning hypothesis.  
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CHAPTER 5:  THE CEREBELLUM AND EYEBLINK 

CONDITIONING: LEARNING VERSUS NETWORK PERFORMANCE 

HYPOTHESES 

A paper published in the journal “Neuroscience”10 
 

V. Bracha11,12, S. Zbarska11, K. Parker11, A. Carrel11, and J. R. Bloedel11 
 

5.1 Abstract 

Classical conditioning of the eyeblink reflex is a form of motor learning that is 

uniquely dependent on the cerebellum.  The cerebellar learning hypothesis proposes that 

plasticity subserving eyeblink conditioning occurs in the cerebellum.  The major evidence for 

this hypothesis originated from studies based on the telecommunications network metaphor 

of eyeblink circuits.  These experiments inactivated parts of cerebellum-related networks 

during the acquisition and expression of classically conditioned eyeblinks in order to 

determine sites at which the plasticity occurred.  However, recent evidence revealed that 

these manipulations could be explained by a network performance hypothesis which 

attributes learning deficits to a non-specific tonic dysfunction of eyeblink networks.  Since 

eyeblink conditioning is mediated by a spontaneously active, recurrent neuronal network 

with strong tonic interactions, differentiating between the cerebellar learning hypothesis and 

the network performance hypothesis represents a major experimental challenge.  A possible 

                                                 
10 Reprinted with permission of “Neuroscience”, 2009. 

11 Department of Biomedical Sciences, Iowa State University. 

12 Primary researcher and corresponding author. 
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solution to this problem is offered by several promising new approaches that minimize the 

effects of experimental interventions on spontaneous neuronal activity.  Results from these 

studies indicate that plastic changes underlying eyeblink conditioning are distributed across 

several cerebellar and extra-cerebellar regions.  Specific input interactions that induce these 

plastic changes as well as their cellular mechanisms remain unresolved.   

5.2 The cerebellar learning hypothesis and classical conditioning of 

eyeblink responses 

The classically conditioned eyeblink or nictitating membrane reflex is a unique type 

of associative learning in which the cerebellum plays a major role (Thompson, 1986, for 

review).  In the delay conditioning paradigm, the conditioned stimulus (CS), a stimulus that 

normally does not evoke the reflex, is paired over successive trials and at a specific interval 

with an ensuing unconditioned stimulus (US), which is capable of eliciting the unconditioned 

response (UR) before the conditioning is initiated.  In each trial the CS and US co-terminate 

(Fig. 1).  As conditioning continues, a new eyeblink response, the conditioned response 

(CR), gradually develops in the interstimulus interval, and the peak of this response becomes 

progressively time-locked to the onset of the US.  In addition, once acquired, the CR can be 

evoked by applying the CS alone.      

In the early eighties of the last century, a very exciting observation was reported 

implicating the cerebellum in this type of learned behavior.  Lesioning a specific region of 

the cerebellar nuclei disrupted the performance of the classically conditioned eyeblink reflex 

in the rabbit (Clark et al., 1984; Yeo et al., 1985).  Subsequently, several reports were 

published demonstrating that the modulation of neurons in the critical regions of the 
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cerebellar cortex and nuclei is associated with the CS, US and CR (Berthier and Moore, 

1986; Berthier and Moore, 1990).   

 

 

Figure 1.  Schematic of the eyeblink conditioning paradigm.  A:  rabbits are presented with a 

paired tone conditioned stimulus (CS) and airpuff unconditioned stimulus (US). Evoked 

eyeblinks are recorded with an infrared sensor.  B:  idealized eyeblink records in naïve and 

trained animals and the pulse diagram denoting the timing of stimuli.  In the delay classical 

conditioning paradigm, the onset of the CS precedes the onset of the US and the stimuli co-

terminate.  Naïve animals don’t respond to the CS, but the US evokes reliably the hard-wired 

trigeminal unconditioned blink (UR, top eyeblink trace).  Over time, rabbits associate the CS 

with the US, and they learn to blink in anticipation of the upcoming aversive US.  These 
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associatively learned responses are called conditioned responses (CR, the second trace from 

the top). 

 

In addition, substantial cerebellar involvement in this type of learning has been shown 

in other species (e.g. Skelton, 1988; Chen et al., 1996; Voneida et al., 1990), including 

humans (Lye et al., 1988; Solomon et al., 1989).  Since these seminal observations, 

temporary and permanent lesion experiments have implicated the cerebellum in multiple 

processes underlying the classical conditioning of this reflex system, including acquisition, 

retention and consolidation (Bracha and Bloedel, 1996; Christian and Thompson, 2003; De 

Zeeuw and Yeo, 2005, for review).  Finally, this dependence was found to extend to other 

types of conditioned reflexes.  Manipulations of the cerebellar circuitry or permanent lesions 

in cerebellar patients disrupted instrumentally conditioned eyelid closure (Bracha et al., 

2001) and classically conditioned withdrawal reflexes in the extremities of cats (Kolb et al., 

1997; Bracha et al., 1999) as well as humans (Timmann et al., 2000).  Because of the 

extensive data from several laboratories dealing with the classically conditioned eyeblink 

reflex in the rabbit, our review will focus on data acquired from this species.     

It is generally agreed that eyeblink conditioning in the delay paradigm is controlled 

by a combination of brainstem eyeblink reflex circuits and the intermediate cerebellar 

network, which is super-imposed over the UR system (Fig. 2). It has been proposed that the 

ipsilateral cerebellar interposed nuclei (IN) and the cerebellar cortex are essential and 

perhaps sufficient sites of plastic changes for generating the cerebellar CR motor command. 

This theoretical position, the cerebellar learning hypothesis, has been extensively reviewed 
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(Thompson, 1986; Christian and Thompson, 2003; Ohyama et al., 2002; Attwell et al., 2002; 

Bracha and Bloedel, 1996), and therefore, it will only be briefly outlined here. The primary 

tenet of this hypothesis is derived from original concepts posited by Albus (1971) and Marr 

(1969), who deduced testable predictions based on the cerebellum’s unique anatomical 

structure and synaptic organization.  It is assumed that information about the CS and US 

arrives to the cerebellum via two distinct routes. The CS is conveyed through mossy fibers 

originating in pontine nuclei, whereas the US is coded in the discharge of climbing fibers 

originating in the inferior olive (IO). Information from the mossy and climbing fibers 

eventually converges on cortical Purkinje cells and cerebellar nuclear neurons.  It is 

presumed that the hetero-synaptic interaction at the points of convergence triggers local 

cellular plastic processes resulting in the changed responsiveness of Purkinje and/or nuclear 

cells.  These plastic changes cause the network to respond to the CS mossy fiber signal by 

issuing a cerebellar nuclear “motor command” that triggers the CR. 

Despite almost three decades of research examining the cerebellum’s contribution to 

the acquisition, retention, and expression of the classically conditioned eyeblink reflex, a 

consensus regarding how this structure plays its important role in this behavior has not been 

reached.  For example, in spite of numerous optimistic claims, specific contributions of the 

cerebellar cortex, cerebellar nuclei and extra-cerebellar substrates to plasticity that underlies 

learning are not known.  This fundamental issue remains unresolved, mostly because of the 

lack of tools needed to interfere with learning without affecting both the local and global 

properties intrinsic to underlying circuits.   
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In this review we will first examine the conceptual underpinnings of experiments that 

tested the cerebellar learning hypothesis using local inactivation or manipulations of 

neurotransmitter signaling.  We will outline the telecommunications network metaphor of 

eyeblink circuits, and we will show that some of the findings from studies that were designed 

based on this metaphor seem to disprove the cerebellar learning hypothesis or at the very 

least challenge some of its basic tenets.  Then we will demonstrate that traditional cerebellar 

manipulations affect the spontaneous activity of neurons at the site of intervention and 

downstream from it, and that tonic interactions associated with this change can radically alter 

the functional state of the entire network.  The tonic interactions in cerebellar systems have 

been largely overlooked in most discussions of the cerebellar learning hypothesis.  We will 

argue that some of the pivotal observations that were declared to support this hypothesis can 

be ascribed to the effects that experimental manipulations had on the tonic activity of 

cerebellar circuitry and/or to methodological aspects of the experiments on which this view is 

based.  We will present promising new data further supporting these arguments, and lastly, 

we will discuss approaches that could be used to address the function of eyeblink 

conditioning circuits more effectively.        

5.3 The telecommunications network metaphor of eyeblink circuits  

 In most discussions of the neural substrates for the classically conditioned eyeblink 

reflex, it is often implicitly assumed that cerebellum-related eyeblink conditioning circuits 

(Fig. 2) operate as a telecommunications network.  Telecommunications networks consist of 

links and nodes arranged so that messages may be passed from one part of the network to 

another over multiple links and through various nodes.  To employ the metaphor, eyeblink 
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circuits consist of nodes (nuclei) and links (inter-connecting axons).  Nodes in eyeblink 

conditioning circuits, individual nuclei or parts of the cerebellar cortex, are viewed as input-

output processing units that transform input messages into output signals.  Importantly, 

properties of this signal transformation can change during learning.  Based on this metaphor, 

experimental interventions in eyeblink circuits, such as local inactivation, are viewed as 

means for disrupting local information processing and for depriving the rest of the circuit of 

locally generated or transmitted task-specific signals.  However, this concept neglects the fact 

that nodes in eyeblink networks also exchange a continuous stream of spontaneous activity 

that shapes the functional state of the network.  In our view, this omission has led to several 

surprising and misleading conclusions. 

 The telecommunications network metaphor can be implicated in several of the early 

inactivation studies.  For example, Krupa et al. (1993) proposed that systematically 

inactivating individual nodes in the network during training sessions could be used to find 

places where learning-induced plasticity occurs.  They speculated that successful CR 

acquisition during inactivation of a particular node would signify that plastic changes 

develop not at this node, but at some other up-stream parts of the network.  On the other 

hand, failure of CR acquisition would mean that learning occurred either at the manipulated 

node or at some of its down-stream efferent targets.  With this logical reasoning one could 

methodically examine individual nodes until all potential sites of learning were found.  Over 

time, it has been shown that blocking glutamate neurotransmission in the cerebellar cortex 

(Attwell et al., 2001) or inactivating cerebellar nuclei (Krupa et al., 1993; Hardiman et al., 

1996) during learning prevents CR acquisition.  In contrast, inactivating a major intermediate 
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cerebellar efferent target, the red nucleus, had no effect on learning (Clark and Lavond, 1993; 

Krupa et al., 1993).  These findings suggested that a significant site of plasticity related to 

CR acquisition is contained in the ipsilateral cerebellum.   

 

 

Figure 2.  A conceptual block diagram of the cerebellum-related circuitry involved in 

acquisition and expression of classically conditioned eyeblinks in the rabbit.  This diagram is 

a highly simplified representation of relevant structures and connectivity. Information 
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regarding the conditioned stimulus (CS) and unconditioned stimulus (US) information enters 

the network via auditory and sensory trigeminal systems.   These inputs are supplied in 

parallel to the serially connected pontine nuclei, cerebellar cortex, cerebellar interposed 

nuclei (IN) and brainstem nuclei contributing to projections to eyeblink premotoneurons and 

supplying motor commands to them.  Since all these sites (labeled with a star) receive CS 

and US information, they should be considered as putative sites of learning.  Output of 

eyeblink premotoneurons supplies motor commands to eyeblink motoneurons.  Backslashed 

circles denote nodes at which inactivation during training disrupts CR acquisition.  Boxes 

with bold borders represent structures among which are in our view distributed plastic 

changes underlying eyeblink conditioning.  BC – brachium conjunctivum; PM – nuclei 

containing eyeblink premotoneurons that include the red nucleus.  The plus symbols mark 

excitatory glutamatergic inputs and minus signs label inhibitory GABAergic inputs. 

  

However, this conclusion was strongly contradicted by our recent discovery that a 

carefully placed, more extensive inactivation of the brachium conjunctivum (outgoing axons 

of deep cerebellar nuclei, BC) actually prevented CR acquisition (Nilaweera et al., 2006).  

Using the logic derived from the metaphor, this surprising finding leads to an important 

inference: the learning essential for CR acquisition occurs most likely outside of the 

cerebellum, in extra-rubral cerebellar efferent targets!  Before accepting this unexpected 

scenario, the possible role of cerebellar feedback circuits has to be considered. 

 Besides projections to pre-motoneuronal parts of eyeblink circuits, the BC contains 

axons projecting to cerebellar afferent sources in the IO and in the pontine nuclei and thus 
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participates in cerebellar feedback loops (Fig. 2).  It is known that inactivating the IN does 

not prevent the pontine nuclei from transmitting CS signals (Cartford et al., 1997).  

Therefore, inactivating the BC should not affect learning via its effect on CS signals from the 

pontine nuclei.  Perhaps more important are the implications derived from the cerebello-

olivary-cerebellar feedback loop.  The cerebellar learning hypothesis assumes that the IO 

supplies the cerebellum with a learning-inducing US signal (error signal) and that the 

inhibitory projection to the IO from the cerebellar nuclei suppresses this signal when learning 

is near completion (e.g. Medina et al., 2002).  If so, then inactivating the BC would disinhibit 

the IO, thereby preventing the suppression of US signals.  This condition, however, should 

not prevent learning (Kim at al., 1998). Consequently, it is unlikely that the effects of BC 

inactivation on CR acquisition were related to changes in transmission of US signals by the 

IO.  At a minimum, we can conclude that employing all the assumptions underlying the 

telecommunications network metaphor, together with data from our recent BC inactivation 

studies, implicate extra-cerebellar sites as additional structures subserving eyeblink 

conditioning.   

 A second unexpected conclusion emerged from studies that inactivated the IO during 

CR expression.  As reviewed above, the cerebellar learning hypothesis postulates that 

cerebellar plasticity is induced by inferior olivary US error signals that enter the IO via 

glutamatergic projections from the trigeminal nuclei.  Correspondingly, lesioning or 

inactivating the IO prevents CR acquisition (McCormick et al., 1985; Welsh and Harvey, 

1998).  Given the assumption that IO error signals are required for the maintenance of 

cerebellar plasticity, the cerebellar learning hypothesis predicts that blocking US responses in 
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the IO should lead to the gradual suppression of CRs – an “unlearning” of CRs analogous to 

CR extinction training in which the CS is repeatedly presented without the US (McCormick 

et al., 1985).  The seemingly ultimate support for this concept came from Medina et al. 

(2002), who reported that blocking glutamate neurotransmission in the IO indeed produces 

the predicted extinction-like suppression of CRs.  However, in our investigation of 

neurophysiological mechanisms of this phenomenon we found that the gradual suppression 

of CRs following the block of glutamate receptors in the IO is related to the gradual diffusion 

of the drug and not to unlearning (Zbarska et al., 2007; Zbarska et al., 2008).  Moreover, we 

determined that precise injections of glutamate antagonists in the IO suppress CRs 

immediately.  These behavioral results are clearly inconsistent with the cerebellar learning 

hypothesis. 

 The above findings, when viewed through the lens of the telecommunications 

network metaphor, contradict the cerebellar learning hypothesis.  In the following sections 

we will argue that, before these contradictions can be considered as solid evidence favoring 

an alternative view incorporating extra-cerebellar sites of plasticity, a major flaw inherent in 

this metaphor needs to be exposed:  the metaphor ignores the fact that experimental 

manipulations of cerebellar circuitry at the nodes of the eyeblink conditioning network 

generate coupled modifications of spontaneous activity capable of altering the functional 

state both within and beyond the targeted node, potentially cascading throughout the 

network.  The inclusion of these tonic interactions in models of eyeblink circuits offers an 

alternate interpretation of the available experimental data.   
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5.4 Tonic interactions in cerebellar circuits 

A fundamental feature of cerebellum-related eyeblink conditioning circuits is their 

spontaneous activity that can be observed in the absence of overt stimuli or movements.  The 

spontaneous activity of individual neurons is a collective product of the intrinsic ability of 

some neurons (e.g. Purkinje cells, IO and IN neurons) to self-generate action potentials and 

of the drive from excitatory, inhibitory and modulatory synaptic inputs (Hausser et al., 2004).  

Spontaneous firing rates differ across individual nodes of the network.  For example, the 

typical spontaneous firing rates of Purkinje cells, IN neurons and IO neurons are about 50 

Hz, 10-40 Hz and 1-2 Hz, respectively.  The spontaneous activity of individual neurons is 

propagated through the network affecting cells in other nuclei, and these effects are further 

sculpted by a number of excitatory and inhibitory recurrent loops.  These dynamic, non-

linear processes determine the self-regulating functional state of the network. 

The importance of tonic activity in cerebellar circuits to the learning and execution of 

a specific motor behavior should not be a surprise.  Several experimental studies over 

decades of research demonstrated that lesions within the cerebellum or its afferent or efferent 

systems produce significant tonic effects throughout the motor system, including 

modifications of a variety of spinal reflexes (for reviews see Dow and Moruzzi, 1958; 

MacKay and Murphy, 1979; Bloedel and Bracha, 1995).  This is particularly clear when 

manipulating the olivo-cerebellar projection.  The early experiments of Carrea et al. (1947) 

demonstrated that the effects of IO lesions on behavior are so profound that they actually 

mimic the effects of ablating major portions of the cerebellum itself.  Later studies revealed 

that IO lesions and IO cooling have profound effects on the spontaneous activity of Purkinje 
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cells.  Considering the very low firing rate of IO neurons, it was surprising that removing the 

IO excitatory input to Purkinje cells led to a high, long lasting increase of their spontaneous 

discharge (e.g., Montarolo et al., 1982).  Central to the arguments we will present, this tonic 

effect emerging from IO inactivation affected the spontaneous firing rate of cells at 

downstream sites.  Since Purkinje cells are GABA-ergic, their sustained high activity was 

shown to suppress activity in their target cerebellar nuclear neurons (Batini et al., 1985).  In 

turn, the decreased firing of nuclear neurons suppressed activity in the red nucleus (Billard et 

al., 1988), which is the main target of excitatory IN projections.  In summary, these studies 

uncovered two important principles:  

a) spontaneous activity in cerebellar network nodes can regulate tonic activity in their 

efferent targets;  

b) suppressing spontaneous activity in one node can trigger related tonic changes 

capable of spreading through large portions of the network, negatively impacting its general 

functional state.   

How relevant are these principles to eyeblink conditioning research? 

5.5 Tonic cerebellar interactions in classically conditioned rabbits         

 Although speculations had been made in a number of studies regarding tonic 

phenomena and their importance (e.g. Bracha and Bloedel, 1996; Welsh and Harvey, 1998; 

Attwell et al., 2001), their experimental demonstration in the rabbit eyeblink conditioning 

model was reported only recently.  Characterizing tonic interactions in cerebellar circuits 

requires combining local circuit manipulations with recording of neuronal activity.  For that 

purpose, we developed a unique, microwire-based, multi-channel recording system that is 
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well suited for long-term isolation of single units.  The long-term stability of unitary 

recording is paramount for experiments that require monitoring cellular activity for at least 1-

2 hours in animals with a freely moving head.  In our initial studies, we focused on analyzing 

electrophysiological consequences of neurotransmitter manipulations in the IO and IN.  

Results of these experiments offer illuminating insights into the mechanisms through which 

cerebellar manipulations affect eyeblink conditioning. 

 As explained in previous sections, demonstrating that US signals from the IO are 

required for the maintenance of CRs constitutes a pivotal test of the cerebellar learning 

hypothesis.  In a frequently cited study, Medina et al. (2002) proposed that this prediction 

could be tested by blocking trigeminal projections to the IO by infusing the IO of trained 

rabbits with a fast glutamate receptor blocker, NBQX.  They reported that NBQX indeed 

produced an extinction-like, gradual suppression of CRs.   

To investigate the neurophysiological mechanisms of this process, we injected NBQX 

in the IO of trained rabbits while simultaneously recording single-unit activity of IN neurons 

(Zbarska et al., 2008).  Based on the prediction of Medina et al., which invokes the 

telecommunications network metaphor, one would expect NBQX to gradually “extinguish” 

CRs with a correlated gradual decrease of the CR-related modulation of neuronal activity in 

the IN.  On the other hand, if NBQX decreases the spontaneous IO firing rate (Lang, 2002), 

one could also expect tonic suppression of IN activity.  We not only found that NBQX 

immediately abolishes CRs without the need for CS presentations (a condition required for 

extinction), but this behavioral response coincided with the immediate suppression of both 

spontaneous IN activity and task-related modulation (Fig. 3).   
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Figure 3.  An example of the parallel effects of inferior olivary NBQX infusion on CR 

performance and on the activity of a task-modulated IN cell. This experiment consisted of 

260 trials.  After 40 baseline trials, NBQX was injected at the beginning of a 40-trial no-

stimulation period. A, Raster plot of IN cell activity during this experiment. The experiment 

starts at the top with each row representing one trial, and each dot marking the occurrence of 

an action potential. The black square in each row corresponds to the onset of the eyeblink in 

that particular trial. Consequently, CRs have onset markers between lines denoting the CS 

and US onsets.  Eyeblinks initiated past the US onset occur in trials in which the animal 

failed to produce the CR. Black squares at the ends of the 40 trials following the NBQX 

injection marker denote the no-stimulation waiting period that was inserted to allow for drug 

diffusion. Before the injection, this cell responded with excitation during the CS–US interval 

and with a combined excitatory/inhibitory response to the US. During the drug diffusion 

period, the firing rate of this cell’s activity precipitously declined. When stimulation was 

resumed, CRs were abolished immediately as evidenced by the blink onset marks on the right 

side of the US onset line.  The baseline activity remained suppressed, and modulation during 

the CS–US interval was severely reduced whereas the relative excitatory modulation to the 

US became more distinct. The neuronal activity gradually recovered toward the end of the 

experiment in parallel with the recovery of behavioral CRs.  B–E, Peri-stimulus histograms 

of the same IN unit constructed for 40 trials before the injection (B), for 40 post-injection 

drug diffusion trials when stimulation was paused (C), for 40 trials following the waiting 

period when stimulation was resumed (D), and for the last 40 trials from the remaining 140 

trials of the experiment (E). Bin width for histograms in B–E is 20 ms. CS, onset of 
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conditioned stimulus; US, onset of unconditioned stimulus. (Reprinted with permission from 

Zbarska et al., 2008)   

 

In the framework of the telecommunications network metaphor, the behavioral part of 

our study argued against the cerebellar learning hypothesis.  However, our 

electrophysiological data revealed that this metaphor had a major shortcoming affecting the 

interpretation of the findings – its failure to recognize the importance of a fundamental 

variable, the tonic interactions in cerebellar networks.  The intent of the above IO studies was 

to observe the consequences of blocking the IO error signal to the cerebellum.  However, the 

IO injection of NBQX also made the cerebellar cortex and nuclei dysfunctional by blocking 

the cerebellar output, which in turn results in the abolition of CRs, precluding any 

conclusions about the mechanisms and sites involved in establishing plasticity. 

 Additional evidence for cerebellar tonic interactions following manipulations of the 

cerebellar circuitry emerged when we examined GABA and glutamate neurotransmission in 

the IN of trained rabbits.  Individual contributions of the cerebellar cortex and IN to CR 

acquisition and expression have been the subject of a long-standing debate.  In an attempt to 

resolve this issue, some investigators proposed that nuclear components of learning could be 

revealed by blocking GABA-ergic projections of Purkinje cells to the IN (Medina et al., 

2001; Ohyama et al., 2006).  They reported that blocking GABA-A receptors either with 

picrotoxin or with gabazine shortens the latency of CRs.  The authors proposed that short-

latency CRs are a manifestation of nuclear plasticity that is revealed in the absence of 

cerebellar cortical input.  In their computer simulations, Medina et al. (2001) predicted that 
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injecting picrotoxin in the IN should affect the time profile of IN neuronal responses but 

should have no effect on their spontaneous activity.  Relevant to the subject of this review, 

these simulations are based on the telecommunications network metaphor because they did 

not consider tonic interactions.   

To examine these proposals, we injected the IN of trained rabbits with GABA 

agonists and antagonists and then measured their effect on IN single-unit activity and on CRs 

(Aksenov et al., 2004).  In our experiments, we could not confirm their prediction that effects 

would be limited to IN neuronal response timing.  Instead, we found that a partial block of 

chloride channels with picrotoxin dramatically increased IN tonic activity.  A more complete 

block of GABA neurotransmission with larger amounts of picrotoxin further increased IN 

spontaneous activity.  It became so high that practically all modulation was suppressed, and 

behavioral CRs were abolished (Fig. 4).  Although the goal of these experiments was to 

block signals embedded in Purkinje cell firing without altering normal IN activity, our 

recordings demonstrated that the functional state of the IN was dramatically altered.  

Furthermore, it is also likely that the excitability of IN efferent targets was also modified.  

This distributed functional abnormality prevented any conclusions about the cerebellar 

cortical and IN roles in CR expression.  We conclude that simply blocking GABA 

neurotransmission in the IN can not address these questions. 

 The examples of tonic interactions in cerebellar circuits demonstrate that local 

inactivation and pharmacological manipulation are imperfect tools when used to interfere 

with task-related signals or to block local information processing.  This is because local 

interventions will inevitably alter normal spontaneous activity of manipulated structures, and 
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this abnormality will spread to down-stream parts of the network.  This problem is further 

exacerbated by participation of feedback loops that provide a path for the propagation of the 

tonic change to up-stream parts of the network.  The spread of tonic changes via the 

cerebello-olivary-cerebellar feedback loop has been documented.  Hesslow and colleagues 

recorded a dramatic reduction of spontaneous Purkinje cell activity when inactivating IN 

axons in the brachium conjunctivum of decerebrate ferrets (Svensson et al., 2005; Bengtsson 

et al., 2004), findings which are consistent with results from our laboratory.  We found that 

inactivating the BC in classically conditioned rabbits elevates the tonic activity of upstream 

IN neurons (Nilaweera et al., 2002).  In summary, combined microinjection and recording 

studies demonstrate that local manipulations alter spontaneous activity and that this change 

can spread via tonic interactions to both down-stream and up-stream parts of the network.   

The down-stream and recurrent propagation of tonic changes is highly pertinent to the 

interpretation of studies in which components of the cerebellar circuits are inactivated during 

learning.  In previous sections we have shown that, when viewed through the perspective of 

the telecommunications network metaphor, the collective results of experiments in which this 

methodology was used point to the existence of extra-cerebellar sites for plasticity underlying 

this behavior.  However, given the potential for recurrent and downstream spread of tonic 

changes, the failure to acquire CRs during BC inactivation does not prove extra-cerebellar 

learning.  It is possible that this treatment also affected cerebellar learning via tonic 

malfunction within the cerebello-olivary-cerebellar feedback loop.  As a result, despite the 

initial optimism regarding the use of reversible lesions, inactivating parts of cerebellar 
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circuits during training actually tells us surprisingly little about the location of plastic 

changes.   

5.6 Cerebellar learning vs. network performance hypotheses 
 
 As argued above, the telecommunications network metaphor can’t explain the results 

of experiments that inactivate neurons or block neurotransmission in eyeblink conditioning 

circuits.  A more realistic conceptualization of how these circuits function has to include 

tonic phenomena.  Eyeblink circuits should be viewed not only as a network of nodes that 

process and transmit task-related signals but also as a spontaneously active, recurrent 

neuronal network with strong tonic interactions.   

 Nevertheless, addressing such concepts as the cerebellar learning hypothesis can not 

proceed without using intervention methods if we are to understand the fundamental 

mechanisms responsible for motor learning phenomena like the classically conditioned 

eyeblink reflex.  Only interfering with information processing within the putative learning-

related substrates can confirm or disprove this view and evaluate its importance for learning 

at a systems level.  The problem is that traditional intervention experiments, such as local 

inactivation or blocking specific neurotransmitter systems, up- or down-regulate spontaneous 

neuronal activity, thus complicating the interpretation of findings.  For example, based on the 

telecommunications network metaphor, our study in which CR acquisition was blocked by 

BC inactivation (Nilaweera et al., 2006) suggests that extra-cerebellar learning definitely 

occurs.  However, when the associated tonic changes of spontaneous activity are considered, 

an alternate, more parsimonious explanation – the network performance hypothesis – 

emerges as a basis for the majority of observations.  This hypothesis proposes that the effects 
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of manipulating cerebellar circuits are related to a non-specific, wide-spread malfunction of 

the networks responsible for acquiring and/or expressing CRs.  Interestingly, we know that in 

the case of BC inactivation, the network performance hypothesis is correct, because blocking 

the BC alters tonic activity in the IO, cerebellar cortex (Bengtsson et al., 2004) and IN 

(Nilaweera et al., 2002), and most likely also in mesencephalic targets of cerebellar efferents.  

Does this mean that these BC inactivation studies disprove the cerebellar learning 

hypothesis?  Not necessarily.  In fact, both hypotheses could be correct because the cerebellar 

learning and performance hypotheses are not mutually exclusive nor are they truly 

antithetical.  Rather, the network performance hypothesis proposes that the relevant findings 

are due to an abnormal functional state of the cerebellar circuitry.  Consequently, no definite 

conclusions about cerebellar learning can be inferred.  Advancing our understanding of the 

neural circuitry subserving eyeblink conditioning will require intervention methods that 

eliminate the abnormalities on which the network performance hypothesis is based. 

5.7 Dissociating learning from network performance-related phenomena 

An obvious solution for dissociating learning from network performance abnormalities 

would be the use of approaches that preserve spontaneous neuronal activity or that target 

processes insensitive to tonic changes.  In our view, three promising research strategies are 

compatible with these goals. 
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Figure 4.  Effects of injecting the IN with the chloride channel blocker, picrotoxin (PTX), on 

the expression of CRs and on IN neuronal activity.  Top panel: CR incidence in 15 injection 

experiments in which two injections of PTX were applied to the IN.  The first injection (I1) 

had only a small effect on the frequency of CRs.  A more extensive block of GABA-ergic 
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neurotransmission with the second PTX injection (I2) gradually abolished CRs.  Control 

injections of vehicle (aCSF) did not affect CR incidence.  Bottom panel: population peri-

stimulus histograms of 55 neurons recorded during PTX injections.  Before injections, this 

population exhibited approximately a 25 Hz spontaneous firing rate and an excitatory 

response in the CS-US interval.  The first PTX injection doubled the spontaneous discharge 

of IN neurons and reduced their CS-related modulation.  Following the second injection, the 

spontaneous activity further increased, and the responses in the CS-US interval were almost 

completely attenuated.  Two horizontal lines in each histogram denote tolerance limits used 

for detecting significant levels of neuronal modulation relative to mean baseline activity 

(Adapted from Aksenov et al., 2004). 

   

In theory, not all cerebellar learning-related processes have to be sensitive to 

cerebellar tonic malfunction.  A possible candidate for such a process could be memory 

consolidation which takes place after signaling events that induce learning in eyeblink 

circuits have already occurred and therefore could not be perturbed by tonic phenomena.  

Attwell et al. (2002) reported that infusions of muscimol in the eyeblink area of the cerebellar 

cortex following training sessions prevented CR acquisition by interfering with memory 

consolidation.  Interestingly, injecting muscimol in the deep cerebellar nuclei did not affect 

CR consolidation.  Based on these results, Attwell at al. concluded that a muscimol-sensitive 

memory consolidation process in the cerebellar cortex is required for eyeblink conditioning.  

This finding, however, does not exclude consolidation of plastic changes in the IN or in 
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extra-cerebellar sites that could be insensitive to IN inactivation and associated tonic changes 

in the circuit.     

Another promising approach involves methods that could interfere with the putative 

cellular substrates of learning without affecting normal neuronal activity.  An example of the 

successful use of this strategy is our study in which we blocked the synthesis of new proteins 

in the IN during CR acquisition sessions (Bracha et al., 1998).  We found that infusing the IN 

with anisomycin suppressed CR acquisition.  Since anisomycin has been reported to have 

minimal effects on spontaneous neuronal activity, this finding can be considered among the 

best evidence for cerebellar learning.  Besides their potential for success, tools targeting 

possible cellular mechanisms of learning also have their limitations.  The most important 

limitation of methods in this category is that they are not suited for analyzing the role of task-

related signals during learning.  For instance, blocking protein synthesis in the IN can’t 

determine which inputs to the IN trigger the protein synthesis-dependent learning 

mechanism. 

The third category of approaches that could separate learning from abnormalities in 

network performance consists of combined applications of receptor agonists and antagonists.  

The tremendous potential of this approach was shown for the first time by Bao et al. (2002), 

who discovered that CRs suppressed by infusing a GABA-A agonist, muscimol, in the IN 

can be recovered by the subsequent infusion of the chloride channel blocker, picrotoxin.  We 

were able to replicate these data (Aksenov et al., 2004; Aksenov et al., in preparation).  Our 

single-unit recordings in injected animals confirmed that muscimol-induced CR suppression 

was accompanied by inhibition of IN neurons: their spontaneous firing was suppressed.  The 
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subsequent infusion of picrotoxin reduced the inhibition and restored spontaneous firing to its 

near normal rate, but the amplitude of event-related responses was reduced (Aksenov et al., 

2004).  Surprisingly, this group of observations was paralleled by the partial restoration of 

CRs.  Because these studies blocked Purkinje cell input to the IN without markedly 

disrupting IN spontaneous activity, they were the first to eliminate the network performance 

hypothesis in experiments blocking network communication.  The fundamental implication 

of these observations is that the IN can support CR expression in the absence of cerebellar 

cortical inputs.  Did the remaining modulation of IN neurons generate the recovered CRs?  

To examine this issue, we again infused the IN with muscimol to block cerebellar cortical 

input, but in addition, a fast glutamate receptor blocker DGG was injected to block direct IN 

input from collaterals of mossy and climbing fibers.  This treatment suppressed both IN 

activity and CR expression.  Follow-up injections of PTX restored IN spontaneous firing, but 

all event-related modulation was suppressed.  Yet, even in this condition CRs were partially 

restored (Aksenov et al., 2004).  This finding strongly suggests that the modulation of IN 

neurons is not required for the expression of these residual CRs.  Such CRs do not seem to 

require motor commands from the cerebellum, supporting the argument that these CRs are 

most likely controlled by extra-cerebellar components of eyeblink circuits. 

5.8 Conclusion 

 In conclusion, we have shown that the basis for the dependency of eyeblink 

conditioning on cerebellar circuits is not completely understood.  The most investigated 

concept, the cerebellar learning hypothesis, assumes learning occurs in the cerebellar cortex, 

the deep cerebellar nuclei, or more recently – in both of these locations.  However, because 
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of difficulties in dissociating the learning and network performance hypotheses, the 

cerebellar learning hypothesis has not been supported by unequivocal, direct evidence from 

lesion or inactivation studies.  Unless future intervention studies successfully manipulate 

putative conditioned eyeblink substrates without altering levels of spontaneous activity, the 

specific roles of the cerebellum in acquiring, expressing, and retaining classically 

conditioned eyeblinks will remain elusive.   

Recent developments have identified new approaches that could minimize the impact 

of cerebellar tonic phenomena.  Although the development of these new tools is still in its 

infancy, efforts in that direction have already revealed very promising results indicating 

plasticity in several cerebellar and extra-cerebellar parts of eyeblink circuits.  Previously we 

proposed, mostly based on indirect evidence, that plastic changes supporting eyeblink 

conditioning are distributed across several components of eyeblink conditioning networks 

(Bracha and Bloedel, 1996; Bracha et al., 2001).  We speculated that all nodes that receive 

the information about the CS and US, including sites within the cerebellum, could be sites of 

plasticity underlying learning (Fig. 2, sites labeled with a star).  This position appears to be 

supported by the available data: (1) consolidation experiments suggesting cerebellar cortical 

involvement; (2) the dependency of CR acquisition on the synthesis of new proteins in the IN 

suggesting an important role for cerebellar nuclei; and (3) combined infusions of GABA and 

glutamate receptor ligands in the IN indicating that CRs are supported at least partially by 

extra-cerebellar substrates.  These data mandate that future research should focus on 

examining the role of both cerebellar and extra-cerebellar sites in the classical conditioning 
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of the eyeblink reflex.  The continued application of novel approaches will lead to the 

resolution of these questions in the relatively near future.        
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CHAPTER 6:  THE ROLE OF IN NEURONAL ACTIVITY IN THE 

CONTROL OF REFLEXIVE AND VOLUNTARY MOVEMENTS 

A paper published as part of a multi-author consensus paper in the journal “Cerebellum”13 
 

V. Bracha14,15, A.J. Carrel14 
 

6.1 Abstract 

In the present consensus paper, we examine the role of the cerebellar interpositus 

nucleus (IN).  Recent findings are considered, including: IN as part of the olivo-cortico-

nuclear microcircuits involved in providing powerful timing signals important in co-

ordinating limb movements; the possible participation of IN in the timing and performance of 

ongoing conditioned responses rather than the generation and/or initiation of such responses; 

a role of IN in the modulation of autonomic and emotional functions; the  control of reflexive 

and voluntary movements in a task- and effector system-dependent fashion, including hand 

movements and associated upper limb adjustments for quick effective actions, and, finally, in 

the development of internal models for dynamic interactions of the motor system with the 

external environment, for anticipatory control of movement. 

6.2 Review 

  

                                                 
13 Reprinted with permission of “Cerebellum”, 2012. 

14 Department of Biomedical Sciences, Iowa State University. 

15 Primary researcher and corresponding author. 
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The cerebellar anterior and posterior interposed nuclei (IN) represent the sole output 

of the intermediate cerebellum.  The largest sub-population of IN cells comprises 

glutamatergic neurons that project to the contralateral red nucleus and also to other 

mesencephalic, thalamic and pontine targets.  These neurons control movements of ipsilateral 

limbs, facial musculature and also some aspects of eye movements. 

What is encoded in the activity of IN neurons?  The answer to this question is partly 

based on studies that recorded single-unit activity of these cells during a variety of behaviors.  

It is known that IN neurons are somatotopically organized (Rispal-Padel et al., 1982, 

Asanuma et al., 1983, van Kan et al., 1993) and that appropriate neurons modulate their 

activity in correlation with task-related sensory inputs, with movements of ipsilateral limbs 

during locomotion and reaching, with reflexive movements of facial musculature, such as 

eyeblinks, and with eye vergence and accommodation (Schwartz et al., 1987, Berthier and 

Moore, 1990, van Kan et al., 1994, Gibson et al., 1996, Zhang and Gamlin, 1998, Chen and 

Evinger, 2006, Sanchez-Campusano et al., 2007).  The movement-related IN signals can both 

precede and follow movement initiation, indicating their involvement in generating and 

shaping movements.  Assessing the functional significance of these IN task-related signals 

requires examining how blocking them affects associated behaviors.  

The most common method of blocking IN signals has been the temporary inactivation 

of IN neurons with the GABA-A agonist muscimol.  It has been shown that injecting the IN 

with muscimol has a diverse array of task-dependent effects on reflexive and voluntary 

movements.  Perhaps the most striking effect of IN inactivation is a complete suppression of 

classically conditioned withdrawal reflexes, such as eyeblink and limb flexion reflexes 
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(Krupa et al., 1993, Bracha et al., 1994, Kolb et al., 1997).  In contrast, muscimol suppresses, 

but doesn’t abolish, unconditioned eyeblinks (Bracha et al., 1994) and limb withdrawals 

(Kolb et al., 1997).  Pertinent to IN function, muscimol injections don’t block all associations 

between the conditioned and unconditioned stimuli because the learned postural preparation 

necessary for limb withdrawal is not affected (Kolb et al., 1997).  Besides classically 

conditioned withdrawal reflexes, IN inactivation also blocks instrumentally conditioned 

eyeblinks (Kreider and Mauk, 2010), and instrumentally conditioned tonic eyelid closure 

(Bracha et al., 2001).  Other limb cutaneo-muscular reflexes, such as tactile placing, magnet 

and hopping reflexes, are also severely suppressed by IN inactivation (Kolb et al., 1997).  In 

addition, IN inactivation was shown to affect several aspects of reaching-to-grasp 

movements, the feed-forward adaptation to perturbations of reaching movements and the 

precision hand/foot placement during reaching, walking and climbing (Milak et al., 1997, 

Bracha et al., 1999, Martin et al., 2000, Horn et al., 2010).  

While IN recording and inactivation studies provided important insights into IN 

function, our knowledge of the functional significance of IN signals remains incomplete.  

The main short-coming of the IN inactivation method is that it affects not only signals 

generated and/or transmitted by the IN, but also its spontaneous activity.  Specifically, 

muscimol completely silences IN neurons (Aksenov et al., 2004).  Thus, behavioral effects of 

muscimol could be either partly or completely caused not by the absence of IN signals, but 

rather by the loss of spontaneous activity-mediated excitatory drive to IN efferent 

targets(Bracha et al., 2009).  Deciphering the functional role of IN output signals requires 

new approaches that 
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Figure. 1.  Blocking glutamate transmission in eyeblink-related area of HVI with DGG (A) 

abolishes CRs, whereas injecting the same site with lidocaine (B) yields short-latency CRs.  

Printout of raw eyeblink data from three experiments on one rabbit.  The animal was 

microinjected (2 ul) on separate days with DGG, lidocaine and vehicle in the same eyeblink-

related region of HVI.  The experiments start at the top with each horizontal eyeblink trace 

representing one CS-US trial.  Microinjections were delivered after 40 pre-injection trials.  

(A) After injecting DGG (200 nmol), CRs (upward deflections between the CS and US 

markers) were abolished immediately.  (B) Lidocaine (LIDO, 4%) also had an immediate 

effect on CRs.  However, instead of abolishing them, it shortened CR latencies.  (C) The 

control experiment reveals that the vehicle (aCSF) had no effect on CRs.  
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would selectively block the modulation of IN neurons with minimal effects on their 

spontaneous firing. 

Promising in this regard are recent eyeblink conditioning studies.  The IN receive two 

relevant inputs: GABA-ergic projections from Purkinje cells (PCs) of the cerebellar cortex 

representing the main input, and an anatomically weaker glutamatergic input from collaterals 

of mossy and climbing fibers.  In theory, selective blocking of incoming signals could 

address the role of IN signals more efficiently.  Blocking collateral inputs with glutamate 

antagonists was shown to have weak effects on IN modulation and spontaneous activity and 

it does not abolish behavioral CRs (Attwell et al., 2002b, Aksenov et al., 2005, Ohyama et 

al., 2006).  This suggests that CR-related signals are largely produced by GABA-ergic input 

from PCs.  Pharmacologically blocking the PC’s input directly in the IN is impractical 

because both GABA agonists and antagonists have major effects on the spontaneous activity 

of IN neurons (Aksenov et al., 2004).  An interesting alternative could be blocking the 

incoming cortical signals at their place of origin in the cerebellar cortex.  Results from 

studies implementing this approach are conflicting.  It has been shown that injections of 

lidocaine into the cortical lobule HV shorten CR latency (Kalmbach et al., 2010).  On the 

other hand, injections of the glutamate antagonist CNQX into the adjacent lobule HVI 

abolish CRs (Mostofi et al., 2010).  

In our ongoing examination of these conflicting claims we found that both effects can 

be evoked from the same cortical site (Fig. 1).  Lidocaine inactivation of the eyeblink-related 

portion of HVI produced short-latency CRs and tonic eyelid closure.  Somewhat counter-

intuitively, injecting the same site with the glutamate antagonist DGG abolished CRs and had 
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no effect on tonic eyelid closure.  Why would these two methods of blocking cortical signals 

at the same site produce diametrically opposite behavioral effects?  The likely explanation 

for this observation is that while both drugs block eyeblink-related cortical signals, only 

DGG does it without perturbing IN spontaneous activity.  This finding strongly indicates that 

IN signals are required for CR initiation.  Lidocaine on the other hand, by virtue of blocking 

all PC output, disinhibits IN neurons.  The ensuing increased excitability of the IN and of 

extra-cerebellar circuits is responsible for abnormal “CR-like” responses.  If confirmed, 

blocking cortical signals with glutamate antagonists could become a powerful tool for 

examining the functional significance of signals generated by the IN.  

A number of excellent neurophysiological studies determined that IN signals control 

movements in a task- and effector system-dependent fashion.  Deciphering the precise 

contribution of these signals remains a challenge that will require new approaches for 

suppressing them without adversely affecting the general functional state of intermediate 

cerebellar neuronal networks. 
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CHAPTER 7:  BLOCKING GABAA NEUROTRANSMISSION IN THE 

INTERPOSED NUCLEI: EFFECTS ON CONDITIONED AND 

UNCONDITIONED EYEBLINKS 

A paper published in the journal “Brain Research”16 
 

K. L. Parker17,18, S. Zbarska17, A. J. Carrel17, V. Bracha17,19 
 

7.1 Abstract 

The interposed nuclei (IN) of the intermediate cerebellum are critical components of 

the circuits that control associative learning of eyeblinks and other defensive reflexes in 

mammals.  The IN, which represent the sole output of the intermediate cerebellum, receive 

massive GABAergic input from Purkinje cells of the cerebellar cortex and are thought to 

contribute to the acquisition and performance of classically conditioned eyeblinks.  The 

specific role of deep cerebellar nuclei and the cerebellar cortex in eyeblink conditioning are 

not well understood.  One group of studies reported that blocking GABAA neurotransmission 

in the IN altered the time profile of conditioned responses (CRs), suggesting that the main 

function of the cerebellar cortex is to shape the timing of CRs.  Other studies reported that 

blocking GABAA neurotransmission in the IN abolished CRs, indicating a more fundamental 

involvement of the cerebellar cortex in CR generation.       

                                                 
16 Reprinted with permission of “Brain Research”, 2009. 

17 Department of Biomedical Sciences, Iowa State University. 

18 Primary researcher. 

19 Corresponding author. 
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When examining this controversy, we hypothesized that the behavioral effect of 

GABAA blockers could be dose-dependent.  The IN of classically conditioned rabbits were 

injected with high and low doses of picrotoxin and gabazine.  Both GABAA blockers 

produced tonic eyelid closure.  A high dose of both drugs abolished CRs, whereas a less 

complete block of GABAA-mediated inputs with substantially smaller drug doses shortened 

CR latencies.  In addition, low doses of picrotoxin facilitated the expression of unconditioned 

eyeblinks evoked by trigeminal stimulation.  These results suggest that the intermediate 

cerebellum regulates both associative and non-associative components of the eyeblink reflex, 

and that behavioral effects of blocking Purkinje cell action on IN neurons are related to 

collective changes in cerebellar signals and in the excitability of extra-cerebellar eyeblink 

circuits. 

7.2 Introduction 

The intermediate cerebellar cortex and interposed nuclei (IN) are important parts of 

circuits controlling the learning and expression of anticipatory withdrawal responses, such as 

classically conditioned eyeblinks (CRs).  The IN are the output of the intermediate 

cerebellum, and GABAergic Purkinje cells of the cerebellar cortex are the main source of 

their innervation (Ito, 1984).  As a consequence of this functional arrangement, studies 

manipulating GABAA receptor-mediated neurotransmission in deep cerebellar nuclei offer 

important insights into cerebellar control of eyeblink motoneurons.  It is known that 

activating GABAA receptors with muscimol suppresses the modulation and spontaneous 

activity of IN neurons (Aksenov et al., 2004), and this treatment blocks expression of CRs 

(Krupa et al., 1993; Bracha et al., 1994).  Effects of suppressing IN neuronal activity in 
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rabbits are not restricted to CRs.  Cerebellar nuclear microinjections of muscimol also down-

regulate the amplitude of airpuff-evoked unconditioned trigeminal eyeblinks (Bracha et al., 

1994; Jimenez-Diaz et al., 2004) and block instrumental eyelid closure (Bracha et al., 2001).  

The inactivation data together with the fact that neuronal activity in intact IN correlates with 

stimuli and movements during conditioned and unconditioned blinks (Berthier and Moore, 

1990; Aksenov et al., 2004; Jimenez-Diaz et al., 2004; Zbarska et al., 2008) suggest that the 

modulation of neuronal activity in the intermediate cerebellum, coupled with the out-going 

tonic excitatory drive, control a range of learned and reflexive eyeblink behaviors.   

Additional understanding of the intermediate cerebellar role in eyeblink control can 

be gained from studies that block GABAergic neurotransmission in cerebellar output nuclei.  

In contrast to muscimol, infusing the IN with the chloride channel blocker picrotoxin (PTX) 

dramatically elevates the spontaneous firing of IN neurons and decreases modulation of their 

activity during CR expression (Aksenov et al., 2004).  Thus far, behavioral effects of 

blocking cerebellar nuclear GABA neurotransmission were not studied systematically and 

several studies of CR performance yielded conflicting results.  Mauk and Garcia (1998) 

reported that IN injections of picrotoxin or gabazine (GZ) invariably decreased CR latency, 

leading to so called short-latency conditioned responses (SLRs).  In contrast, others reported 

that IN infusions of PTX abolish CRs (Mamounas et al., 1987; Attwell et al., 2002; Aksenov 

et al., 2004).  The cause of these variable PTX effects is not clear.   

Based on our previous report of a dose-dependent effect of PTX on IN neuronal 

activity (Aksenov et al., 2004), we propose that behavioral outcomes of injecting the IN with 

GABAA receptor antagonists are related to the extent of the block.  We hypothesized that a 
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partial disruption of GABAergic neurotransmission in eyeblink-related neurons should 

produce SLRs and that a complete block of inhibitory inputs will abolish CRs.  To address 

this hypothesis, we infused the IN of classically conditioned rabbits with low and high doses 

of GABA antagonists.  In the second part of this study we investigated the parallel effects of 

PTX infusions on CRs and inborn visual and trigeminal unconditioned responses (URs).  

Here we report that a more complete block of GABAA receptor-mediated neurotransmission 

with high doses of PTX and GZ abolished CRs.  In contrast, lower doses of PTX and GZ 

produced SLRs, increased tonic eyelid closure, and facilitated unconditioned trigeminal 

eyeblinks. 

7.3 Results 

7.3.1 General observations 

When injected in the IN at sites where previous small injections of muscimol 

abolished CR expression, both GZ and PTX had a dose-dependent effect on eyeblink 

expression.  At small doses, both drugs shortened CR latency and increased tonic eyelid 

closure.  In addition, low-dose PTX increased the amplitude of URs to a weak airpuff US and 

altered the velocity and duration of URs evoked by the normal airpuff intensity.  At higher 

doses both drugs suppressed CRs.  Besides their effect on eyelid movements, both drugs 

exaggerated responses to the airpuff US causing a more generalized withdrawal response 

encompassing neck and forelimb movements that drew the animal’s head away from the air 

stimulation.  Notably, tonic eyelid closure and withdrawal-related postural asymmetry 

disappeared immediately after the animal was removed from the restraint box.  All of these 



www.manaraa.com

143 

 

  

 

effects were observed at injection sites located directly at or in the near vicinity of the left 

anterior IN (Fig. 1).   
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Figure 1.  Reconstruction of injection sites in the IN for GZ (stars, n = 3) and PTX (circles, n 

= 3) for Experiment #1 and PTX (triangles, n = 4) for Experiment #2.  The identified sites 

were transferred to a set of standardized coronal sections of the rabbit cerebellum.  A-D: four 

adjacent, 0.5-mm sections through the cerebellum, arranged in rostral-caudal order.  All 

injection sites were located directly on or in close proximity to the anterior interposed/dentate 

nuclear border.  InA, anterior interposed nucleus; DN, dentate nucleus; LV, lateral vestibular 

nucleus; SV, superior vestibular nucleus; InP, posterior interposed nucleus; FN, fastigial 

nucleus; scp, superior cerebellar peduncle; icp, inferior cerebellar peduncle.   
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Figure 2.  Examples of stack plots of eyeblink mechanograms showing the effects of GZ on 

conditioned eyeblink performance when injected in the IN.  Each experiment begins at the 

top with each mechanogram representing 1 trial.  All mechanograms were filtered by 

subtracting the mean pre-stimulation eyelid position in the corresponding trial.  A: an 

experiment with an injection of low-dose GZ.  Following the injection (indicated with 

arrow), the latency of conditioned responses (upward deflections between CS and US onset 

markers) was shortened for the remaining 60 trials.  B: identical to plot A but in this 

experiment, high-dose GZ was injected.  Following the injection, CRs were gradually 

abolished.  C: control for both A and B in which aCSF was injected following 40 pre-

injection trials.  There was no vehicle effect on the expression of CRs in the experiment.  
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Figure 3.  Three dimensional surface plots of the individual examples of eyeblink 

mechanograms shown in Fig. 2.  In this display, eyeblink mechanograms were not filtered to 
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preserve information about the tonic eyelid position.  Each cut through the surface plot 

corresponds to one trial and the colors, together with the z axis, code the eyelid aperture 

(dark green = open, yellow = intermediate, dark red = mostly closed). A: one hundred trials 

illustrating the effect of low-dose GZ.  The GZ injection (thick arrow) induced a long lasting 

tonic eyelid closure, coupled with decreased eyeblink amplitude and SLRs.  B: effect of high-

dose GZ showing SLRs super-imposed on a tonically closed eye.  Shortly thereafter, the 

tonic eyelid closure subsided and CRs were gradually abolished.  C: control experiment for 

both A and B where aCSF, injected after 40 pre-injection trials, had no effect on tonic eyelid 

closure. 

7.3.2 Effects of Gabazine and Picrotoxin on CR expression (Experiment #1) 

The effects of both drugs on CR expression were dose-dependent, yielding either 

SLRs or CR abolition.  Drug doses that led to these effects varied between rabbits.  For 

example, a dose that shortened latencies of CRs in one rabbit could abolish CRs in another.  

Consequently, both the low and high doses were individually titrated for each animal.  Our 

criterion for the high-dose was suppression of CR incidence to 30 % or less in at least one 

post-injection block of 10 trials.  The low-dose was identified based on the appearance of 

SLRs lasting at least 10 minutes (about 30 trials).   
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Figure 4.  Effects of low (circle) and high doses (squares) of GZ and PTX on means (± SE, n 

= 3) for CR incidence and eyeblink latency.  A: effect of GZ on CR incidence.  While high-

dose GZ suppressed CRs, low-dose GZ and control injections of vehicle (triangles) had 

minor or no effect on CR incidence.  B: effect of PTX on CR incidence.  Similar to GZ, high-

dose PTX suppressed CRs, but CRs had a greater tendency to recover toward the end of the 

experiment.  C: effect of GZ on eyeblink latency.  High-dose GZ increased CR latency 

whereas low-dose decreased the CR onset time.  D: effect of PTX on eyeblink latency.  

Effects of PTX are similar to GZ, except that low-dose PTX took 60 trials to shorten CR 

latency.   In A-D, injections of aCSF (triangles) had no effect on CR expression. 
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Figure 5.  Effects of low (circle) and high-doses (square) of GZ and PTX on the means (± 

SE, n = 3) for eyeblink baseline, peak, and amplitude.  A: effect of GZ on eyeblink baseline 

expressed in percentage of maximum eyelid closure.  Low-dose GZ produced an immediate 

and long lasting eyelid closure.  The eyelid closure resulting from high-dose GZ was short-

lasting and it recovered within 20 trials.  B: effect of PTX on eyeblink baseline.  Both low 

and high-dose PTX induced long lasting eyelid closure.  Control injections of aCSF 

(triangles) in A and B did not affect eyeblink baseline.  C: effect of a low, SLR-inducing 

dose of GZ on eyeblink peak (diamonds) and amplitude (circles).  Injected (inj.) after 40 pre-
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injection trials, GZ immediately increased eyeblink peak and decreased amplitude.  D: effect 

of SLR-inducing, low-dose PTX on eyeblink peak and amplitude.  Similar to GZ, PTX 

increased CR peaks but decreased eyeblink amplitudes.  

 
7.3.3 Low-Dose Effects 

When compared to control aCSF injections (Fig. 2C), low-dose GZ injections (0.13 – 

0.51 nmol) significantly shortened CR latencies (Figs. 2A, 3A, F 1,2 = 29.91, p = 0.032).  The 

mean pre-injection eyeblink latency was 155.72 ± 15.03 ms and it declined immediately to 

96.89 ± 15.80 ms in the first post-injection block of trials, peaking in the fifth at 78.41 ± 

20.57 ms (Fig. 4C).  Typically, SLRs were super-imposed on the background of GZ-induced 

tonic eyelid closure (Fig. 3A).  Mean pre-injection eyelid aperture was 8.42 ± 1.28 % of 

maximum eyelid closure.  Following GZ, rabbits had a tendency to ‘squint,’ significantly 

reducing their mean pre-eyeblink eyelid aperture nearly 6-fold to 56.69 ± 3.87 (Fig. 5A, F9,18 

= 6.97, p = 0.00025).  In parallel to changes in eyeblink latency, GZ significantly reduced CR 

amplitude measured relative to eyelid aperture before the eyeblink (Figs. 2A, 3A, 5C, F9,18 = 

2.96, p = 0.024).  However, since these small amplitude CRs were executed on the 

background of a partially closed eye, the CR peak (measured relative to maximally opened 

eyelids) actually increased following the injection.  Control injections of aCSF had no effect 

on CR latencies, amplitudes, or on baseline eyelid aperture (Figs. 4C, 5A, 5C).   

Similar to GZ, injections of low-dose PTX (0.31 – 4.98 nmol) shortened eyeblink 

latency.  However, this effect was notably delayed when compared to GZ and it developed 

only in the last four blocks of the 10-block post-injection period (Fig. 4D, F13,26 = 3.48, p = 
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0.0032).  This difference in the effect onset was most likely related to differences in 

effectiveness of drug diffusion.  Mean eyeblink latency decreased from 177.95 ± 9.53 ms 

pre-injection to 104.41 ± 25.79 ms by post-injection block 10.  Also similar to GZ, PTX 

increased tonic eyelid closure (Fig. 5B, F13,26 = 2.13, p = 0.049) and it reduced CR amplitude 

(Fig. 5D, F13,52 = 4.09, p = 0.00013) while increasing the absolute eyeblink peak in the CS - 

US period.  Low doses of GZ and PTX had only a moderate effect on CR incidence, being 

slightly reduced and tending to recover toward the end of experiments (Figs. 4A-B).  

7.3.4 High-Dose Effects  

Effects of high doses of GZ (0.51 – 1.02 nmol) and PTX (0.62 – 7.47 nmol) were 

remarkably different from low-dose injections of these drugs.  Most notably, both GZ and 

PTX at high doses suppressed CRs.  An individual example in Figs. 2B and 3B shows that 

shortly after the injection of GZ, CRs were abolished, contrasting with the CR latency-

shortening effects of low-dose GZ in the same animal and injection site (Figs. 2A, 3A).   

At the group level, high doses of GZ and PTX gradually, but significantly suppressed 

CR incidence (Figs. 4A-B) when compared to the pre-injection performance and to the 

control experiment (GZ: F9,18 = 9.21, p = 0.00004, PTX: F13,26 = 5.25, p = 0.0002).  This 

gradual suppression of CRs was paralleled by a gradual increase of eyeblink latency in the 

CS - US period (Figs. 4C-D, GZ: F9,18 = 4.29, p = 0.0041, PTX: F13,26 = 5.23, p = 0.00017).  

While the effect of high-dose GZ on tonic eyelid closure was transient (Fig. 5A), high-dose 

PTX produced sustained eyelid closure, nearly doubling from 21.25 ± 3.40 % pre-injection to 

41.42 ± 4.78 % of the full eyelid closure post-injection (Fig. 5B, F 13,26 = 0.64, p = 

0.000031).  
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7.3.5 Effects of Low-Dose Picrotoxin on CR and UR expression (Experiment #2) 

In Experiment #1, we demonstrated how low doses of PTX affected CR expression.  

In considering whether disinhibiting the IN affects URs, four rabbits were injected with an 

SLR-eliciting dose of PTX so parallel effects of this treatment on CR and UR expression 

could be examined.  In these animals, paired CS + US trials were intermixed with three 

different types of US trials: light, weak airpuff, and regular airpuff.  As expected, injections 

of low-dose PTX (2.49 to 6.22 nmol) shortened CR latencies (Fig. 6A).  The repeated-

measures ANOVA revealed a significant drug and block-of-trials interaction (Fig. 7A, F3,9 = 

8.061, p = 0.0064).  Low-dose PTX shortened baseline CR latency from 197.20 ± 20.85 ms 

pre-injection to 99.43 ± 13.53 ms in the third block of post-injection trials.  The tonic eyelid 

closure increased from 5.36 ± 0.76 % pre-injection to 20.02 ± 3.42 % in the second post-

injection block and to 27.53 ± 8.26 % in the third (F3,9 = 4.23, p = 0.04).  In parallel with 

tonic eyelid closure, the CR peak increased from 32.70 ± 7.41 % in pre-injection trials to 

59.05 ± 12.04 % in the third post-injection block (Fig. 8B). This CR peak finding was 

revealed as main effects for the within-subject factor, blocks (F3,9 = 4.70, p = 0.031), and for 

the between-subject factor, PTX vs aCSF (F3,9 = 11.81, p = 0.041).  Injections of vehicle had 

no effect on CR latency or tonic eyelid position.  Since CR amplitudes were not significantly 

affected by PTX (Fig. 8A), it is likely that changes in the CR peak amplitude were due to 

increased tonic eyelid closure.     
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Figure 6.  Example of effects of PTX injections in the IN on the performance of conditioned 

eyeblinks and on unconditioned responses evoked by weak airpuffs.  Both stack plots of 

eyeblink mechanograms are a complete printout from the same experiment.  The experiment 

begins at the top, with each trace representing one trial, and the time of injection is indicated 

by an arrow.  A: in paired CS + US trials, PTX shortened the latency of CRs (positive trace 

deflections between the CS and US markers).  B: in weak airpuff-alone trials, PTX increased 

UR amplitude approximately at the same time when SLRs were observed in A. 
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7.3.6 URs to the weak airpuff 

Among the three types of URs tested, eyeblinks to the weak airpuff were the most 

affected.  Most notably, PTX increased UR amplitude during the same time period in which 

the drug affected CR expression (Figs. 6A-B).  The mean amplitude of URs to the weak 

airpuff increased from 9.01 ± 2.65 % pre-injection to 45.88 ± 4.48 % during the third block 

of post-injection trials (Fig. 8C, F3,9 = 10.75, p = 0.00025).  Mean UR peaks to the weak 

airpuff likewise increased from 13.66 ± 2.42 % during the pre-injection block of 10 trials to 

67.64 ± 8.45 % during the third block of post-injection trials (Fig. 8D, F3,9 = 11.18, p = 

0.0022).  Similar to the PTX effect on CR latencies, mean UR latencies to the weak airpuff 

were shortened 50 % post-injection (Fig. 7B, F3,9 = 5.095, p = 0.025), steadily decreasing 

from 68.43 ± 9.80 % pre-injection to 33.80 ± 1.91 % in the third block of post-injection 

trials.  Control injections of vehicle had no effect on latency or amplitude of URs to the weak 

airpuff (Fig. 7B, 8C).    
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Figure 7.  Effects of PTX (squares) injections (inj.) on the means (± SE, n = 4) for CR and 

UR latency.  A: effect of PTX on eyeblink latency in paired CS + US trials.  PTX reduced 

CR latency.  B: effect of PTX injections to the IN on UR latency during weak airpuff trials.  

The UR latency gradually decreased when compared to the pre-injection level.  C: PTX had 
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no effect on UR latency during regular intensity airpuff trials.  Injections of aCSF (triangles) 

had no effect on eyeblink latency during either type of trial.   

 

7.3.7 URs to the strong airpuff and to the light  

While PTX did not significantly affect UR amplitude to the strong airpuff (Fig. 8E), 

the profile and peak of these eyeblinks were affected.  The mean peak of URs to the strong 

airpuff increased from 54.33 ± 11.74 % pre-injection to 91.34 ± 3.84 % during the third 

block of post-injection trials. (Fig. 8F, F3,9 = 5.61, p = 0.019).  The maximum instantaneous 

velocity of eyelid closure during eyeblinks to the strong airpuff nearly doubled from 0.99 ± 

0.26 % per ms pre-injection to 1.93 ± 0.23 % per ms during the third block of post-injection 

trials (Fig. 9D, F3,9 = 4.49, p = 0.035).  Besides its effect on eyelid closure velocity, PTX also 

delayed eye re-opening which was manifested as greater eyelid closure still present at the end 

of the 1400-ms recording period.  Delayed eye re-opening was apparent both in raw and 

normalized eyeblink averages (Figs. 9A, 9C).  At the end of the 1400 ms recording period, 

raw eyeblinks had increased from 9.44 ± 1.30 % in pre-injection to 53.28 ± 12.76 % during 

the third block of post-injection trials (Fig. 9A, F3,9 = 9.65, p = 0.00036).  Normalized 

responses showed the same tendency (Fig. 9C).  Injections of vehicle had no effect on the 

peak, profile, or velocity of URs to the strong airpuff (Figs. 8E-F, 9B).  Furthermore, PTX 

did not significantly affect URs to light.   
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Figure 8.  Effects of PTX (squares) on the means (± SE, n = 4) of amplitudes (left column) 

and peaks (right column) of CRs and airpuff-evoked URs.  A: PTX injections (inj.) did not 

significantly affect CR amplitude in CS + US trials.  B: PTX injections increased the CR 

peak in CS + US trials.  C: the amplitude of responses to the weak airpuff US increased 

following PTX injections.  D: the peak of responses to the weak airpuff US also increased 
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following PTX injections.  E: the amplitude of regular airpuff-evoked URs was not affected 

by PTX.  F: the peak of regular airpuff URs slightly increased following PTX.  Neither peaks 

nor amplitudes of responses in all three conditions were affected by control injections of 

aCSF (A-F). 
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Figure 9.  Effects of PTX on the profile and instantaneous velocity of URs evoked by strong 

airpuff.  A: average eyeblinks (n = 4) to the strong airpuff in one block of trials before (Pre-

inj.) and three blocks of trials following (Post 1-3) PTX injections.  PTX increased tonic 

eyelid closure seen as increased signal levels before the US onset.  Also, eyelid re-opening 

was delayed in post-injection trials as indicated by the higher signal at the end of the 

recording period. C: eyeblinks from (A) were normalized to compare their time profiles.  



www.manaraa.com

158 

 

  

 

This analysis revealed a slight decrease in UR peak time as well as a clear delay in post-blink 

eyelid re-opening in post-injection trials.  B: average eyeblinks to the strong airpuff before 

and after control injections of aCSF.  Injections of vehicle had no effect on the shape and 

velocity of strong airpuff-evoked eyeblinks.  D: maximum velocity of URs to the strong 

airpuff (mean ± SE, n = 4).  PTX significantly increased the maximum instantaneous velocity 

of strong airpuff URs. 

7.4 Discussion 

The present study demonstrated that blocking GABAA neurotransmission in the IN 

with PTX or GZ affects CRs in a dose-dependent manner.  While high doses of GABAA 

blockers suppressed CR expression, lower drug doses shortened CR latency.  Besides their 

effects on CRs, the SLR-inducing doses of PTX also affected non-associative components of 

eyelid movements; they increased tonic eyelid closure and facilitated URs evoked by 

trigeminal stimulation. 

7.4.1 Effects on CR expression 

We hypothesized that prior variance in results of blocking GABAA receptor-mediated 

neurotransmission in the IN on CR expression could be related to the extent of the GABAA 

block.  Our data presented here confirm this notion.  High amounts of PTX and GZ 

suppressed CRs.  This finding confirmed previous reports of CR abolition (Mamounas et al., 

1987; Attwell et al., 2002; Aksenov et al., 2004).  On the other hand, lower amounts of both 

drugs, when administered at sites where high doses abolished CRs, had a minor effect on CR 

incidence, but significantly shortened their latency.  This supports previous reports of SLRs 



www.manaraa.com

159 

 

  

 

induced by cerebellar nuclear injections of PTX (Garcia and Mauk, 1998; Medina et al., 

2001) or GZ (Ohyama et al., 2006).  Furthermore, the amount of PTX and GZ required to 

produce SLRs varied among individual animals.  Although all injection sites in this study 

were located in the IN region (Fig. 1), and their proximity to eyeblink-related parts of 

cerebellar nuclei was functionally confirmed with muscimol injections abolishing CRs, 

effective doses of GABAA blockers had to be titrated to optimize effects.  In general, smaller 

amounts of drugs were required for SLRs and CR abolition at sites with the best muscimol 

effects, suggesting a dependency on the amount of drug diffusing around the eyeblink 

representation in deep cerebellar nuclei. 

 Differences between the effects of high and low drug doses could result from drug 

spreading to the overlying cerebellar cortex.  Blocking GABAA neurotransmission in the 

cerebellar cortex increases the tonic firing rate of GABAergic Purkinje cells (Thomsen et al., 

2004).  Assuming the high drug dose did diffuse into the non-targeted cerebellar cortex, 

increased Purkinje cell activity would inhibit the IN and abolish CRs.  However, this effect 

would be prevented by the simultaneous suppression of GABAA neurotransmission in the 

targeted deep cerebellar nuclei.  Thus, conjectured drug diffusion to the cerebellar cortex 

does not explain CR abolition by high doses of GABAA blockers. 

 In agreement with previous reports (Medina et al., 2001), SLR-inducing doses of both 

blockers reduced CR latency and changed the temporal profile of CRs, which frequently 

peaked before the US onset (Figs. 2A, 3A).  GZ reduced CR amplitude (Figs. 2, 5) when 

measured relative to the eyelid position before application of the CS.  Effects of PTX on CR 

amplitude were less pronounced, ranging from a small decrease in Experiment #1 (Fig. 5) to 
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no change in Experiment #2 (Fig. 8).  On the other hand, CR peaks measured relative to the 

maximally open eye, increased following both drugs and in both experiments (Figs. 5, 8).  

These seemingly contradictory effects were due to a drug-induced tonic eyelid closure.  

Following drug injections, CRs were evoked on a background of tonic eyelid closure and the 

same or smaller blinks resulted in absolute eyelid closure larger than baseline blinks recorded 

before injections or those recorded after control.   

7.4.2 Effects on non-associative components of blinking 

High and low doses of PTX and low-dose GZ elicited sustained tonic eyelid closure 

during which animals maintained partially closed eyelids both during and between trials.  

This finding confirms and extends our previous reports of PTX effects on tonic eyelid 

position in instrumental and classical conditioning tasks in the rabbit (Bracha et al., 2001; 

Aksenov et al., 2004).  In our study of instrumental eyelid behavior we found that 

inactivating the IN with the GABAA agonist, muscimol, disrupts instrumentally conditioned 

tonic eyelid closure (Bracha et al., 2001).  Since down-regulating the neuronal firing rate in 

the IN with muscimol produces tonic eyelid opening, whereas increasing the IN neuronal 

activity with GABAA antagonists increases tonic eyelid closure, it appears that tonic IN 

activity controls tonic eyelid aperture.  In this regard, it was surprising that high doses of GZ 

produced only transient tonic eyelid closure, followed by eyelid opening at later stages of the 

experiment.  Pertinent to this finding, in earlier work we observed that injecting the IN with 

the GABAA antagonist bicuculline at low concentrations increased the tonic activity of IN 

neurons and at high concentrations evoked bursting followed by long periods of inactivity 

(Bayev and Bracha, unpublished observations).  If GZ has similar properties, then low doses 
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would increase the tonic activity of IN neurons (Chen and Evinger, 2006) and enhance tonic 

eyelid closure.  On the other hand, high doses would reduce the IN spontaneous firing rate, 

leading to eyelid opening and CR abolition.   

 To determine whether SLR-inducing doses of PTX affect URs, rabbits were presented 

with trigeminal and visual stimuli.  Analyses of latencies, amplitudes, and velocity profiles 

showed no effect on photic URs.  In contrast, PTX facilitated URs evoked by airpuffs.  This 

was most pronounced in weak airpuff trials, where PTX shortened UR latencies and 

increased UR amplitudes.  In strong airpuff trials, PTX increased the maximum instantaneous 

velocity of eyelid closure and delayed eyelid re-opening following the blink.  These findings 

corroborate observations of GZ effects on URs in anesthetized rats (Chen and Evinger, 2006) 

and complement reports of opposite effects of IN lesions and inactivations in the rabbit 

(Welsh and Harvey, 1989; Welsh, 1992; Bracha et al., 1994).  Here we have shown that 

SLR-inducing levels of GABAA neurotransmission affect non-associative eyelid movements.  

These data collectively demonstrate IN involvement in the control of tonic eyelid closure and 

trigeminal stimulation-evoked URs.    

7.4.3 Implications for cerebellar control of eyeblinks 

The present findings illuminate the controversy about PTX’s effect on CR expression 

(Garcia and Mauk, 1998; Attwell et al., 2002).  We have shown that blocking GABAA 

neurotransmission affects CRs in a dose-dependent manner.  Blocking either GABAA 

receptors or chloride channels with low drug doses induces SLRs.  On the other hand, 

administering higher drug doses at the same injection sites abolishes CRs.  In their original 

reports, Mauk and colleagues suggested that SLRs are evoked when GABAergic Purkinje 
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cells are functionally disconnected from eyeblink representation in the deep cerebellar nuclei 

(Garcia and Mauk, 1998; Medina et al., 2001).  Our results do not support this notion.  We 

propose that during SLRs, cerebellar cortical projections are not disconnected completely 

because increasing the drug dose further aggravates behavioral effects, resulting in CR 

abolition. 

An important contribution of the present study is showing that SLR-inducing 

injections of PTX affect non-associative components of blinking.  This confirms previous 

suggestions that the intermediate cerebellum controls both classically conditioned and 

unconditioned eyeblink reflexes (Welsh and Harvey, 1989; Bloedel and Bracha, 1995; 

Delgado-Garcia and Gruart, 2006; Chen and Evinger, 2006).  It is known that neurons in the 

interposed nuclei respond to both the tone CS and trigeminal US (Berthier and Moore, 1990; 

Aksenov et al., 2004; Jimenez-Diaz et al., 2004; Chen and Evinger, 2006).  Consequently, it 

is possible that effects of PTX and GZ could be related to changes of IN task-related signals.  

However, the effects of IN pharmacological manipulations are also very likely related to 

changes in tonic IN activity.  It is paramount to note that PTX and GZ dramatically enhance 

the spontaneous firing rate of IN neurons (Aksenov et al., 2004; Chen and Evinger, 2006).  

These IN neurons then send excitatory projections to the red nucleus and other 

mesencephalic eyeblink-related targets.  In addition, neurons in the red nucleus receive CS 

and US information (Desmond and Moore, 1991) and project to sensory trigeminal (Davis 

and Dostrovsky, 1986; Godefroy et al., 1998) and facial nuclei (Holstege and Tan, 1988).  

Thus, it is possible that the elevated spontaneous IN activity increases excitability of extra-

cerebellar eyeblink pre-motoneurons and this could affect CR and UR performance in a 
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manner unrelated to learning.  Since PTX and GZ affect both neuronal modulation and 

spontaneous activity simultaneously, dissociating contributions of these two processes to CR 

and UR performance is difficult and the present study cannot resolve this question (for 

review, see Bracha et al., 2008).   

The most plausible explanation of the effects of low doses of PTX and GZ is that they 

partially block the inhibitory drive of Purkinje cells and IN GABAergic interneurons.  This 

enhances the spontaneous firing rate of IN neurons, and reduces their depth of modulation 

(Aksenov et al., 2004; Chen and Evinger, 2006).  The elevated IN firing in turn increases the 

activity of eyeblink pre-motoneurons and motoneurons, and modulates transmission of 

sensory information in the sensory trigeminal system.  The high spontaneous firing within 

eyeblink circuits enhances tonic eyelid closure.  Importantly, this tonic effect on eyelid 

position is context-dependent, because removing the animal from the restraining box restores 

normal eyelid aperture.  This suggests a so far unknown and context-dependent gating 

mechanism that can cancel the influence of the high IN firing rate on pre-motoneurons.  The 

reduced modulation of IN neurons is transmitted to mesencephalic pre-motoneurons, which 

themselves are now more excitable and respond more vigorously to IN signals as well as to 

direct CS and US inputs.  The collective changes both inside and outside of the cerebellum 

are then responsible for facilitating responses to the CS and trigeminal US.  Notably, the 

described facilitation of eyeblink circuits does not affect optic URs.  This indicates that CR / 

UR facilitation is not due to increased excitability of motoneurons, because this process 

would affect blinks to all modalities. 
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In our previous study we have shown that large doses of PTX dramatically increase 

IN firing rates and suppress neuronal responses to the CS and US (Aksenov et al., 2004).  It 

is likely that this over-excitation of IN neurons, together with the associated high excitability 

in their efferent targets, saturate the circuit’s capacity to respond to the CS and this 

suppresses CRs on the background of pronounced eyelid closure.  As addressed above, the 

mechanism of high GZ doses is different – it appears to suppress IN activity.  The resulting 

suppression of cerebellar task-related signals and the decreased excitatory drive to eyeblink 

pre-motoneurons counter-balance tonic eyelid closure and suppresses CRs.                    

7.5 Material and Methods 

7.5.1 Subjects 

The experiments were performed on 10 male New Zealand White Rabbits (Harlan; 

Indianapolis, IN) weighing 2.5-3.0 kg (3-4 months old at time of surgery).  Rabbits were 

housed individually on a 12-hour light/dark cycle and provided food and water ad libitum.  

All experiments were performed in accordance with the National Institutes of Health’s 

“Principles of Laboratory Animal Care” (publication No.  86-23, revised 1985), the 

American Physiological Society’s “Guiding Principles in the Care and Use of Animals,” and 

the protocol approved by Iowa State University’s Committee on Animal Care.   

7.5.2 Surgery 

Using aseptic techniques, surgery was performed on naive rabbits anesthetized with a 

mixture of ketamine (50 mg/kg), xylazine (6 mg/kg) and acepromazine (1.5 mg/kg).  The 

head was secured in a stereotaxic apparatus with lambda positioned 1.5 mm ventral to 

bregma.  A stainless steel injection guide tube (28-gauge thin-wall tubing) was 
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stereotaxically implanted 0.5 mm dorsal to the expected location of the left anterior IN 

((0.69x + 4.8) - x mm rostral from lambda, x being the horizontal distance between bregma 

and lambda in mm: 5.3 mm lateral and 13.5 mm ventral to lambda).  A 33-gauge stainless 

steel stylet was inserted into the guide tube in-between experiments to protect its patency.  

The guide tube, anchor screws, and a small Delrin block designed to accommodate an airpuff 

delivery nozzle and eyeblink sensor were secured in place with dental acrylic.  All animals 

were treated with antibiotics for 5 days during recovery from surgery.   

7.5.3 Training procedures  

Following recovery from surgery, rabbits were adapted to a restraint box in three 

daily 30-minute sessions.  Adapted rabbits were trained in the standard classical conditioning 

paradigm until they reached at least 90 % CRs for 3 consecutive days.  The conditioned 

stimulus (CS) was an 85-db, 450-ms, 1-kHz tone, super-imposed on a continuous 70-db 

white noise background.  The CS co-terminated with a 40-psi, 100-ms airpuff unconditioned 

stimulus (US) directed to the left eye.  The inter-stimulus interval was 350 ms and each 

training session consisted of 100 trials presented in pseudorandom, 15-25 sec inter-trial 

intervals.  All experiments were conducted in a sound-attenuated chamber.   

Animals tested in the UR performance experiments (Experiment #2) were adapted to 

a mixed paradigm following training.  The paired presentation of the CS + US was alternated 

with three different types of US in Experiment #2: a normal airpuff US, a weak airpuff US 

(100 ms, 4-5 psi at the source), and a photic US (30 ms flash of four white LEDs positioned 

in front of the left eye; light intensity was dimmed to only elicit near-threshold URs).  This 
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mixed-stimulation paradigm consisted of repeated blocks of 10 trials: 4 paired CS + US, 2 

normal US, 2 weak airpuff US, and 2 light US trials were pseudorandomly intermixed.   

7.5.4 Injection procedures 

Injections were delivered via a 33-gauge stainless steel injection needle which was 

connected via transparent Tygon tubing to a 10-µL Hamilton syringe.  The injection tubing 

was first filled with nanopure water, and then a small bubble was drawn into the end of the 

injection needle before drawing in drug.  The bubble was used for monitoring the injected 

volume relative to gradation marks on the tubing.  The injection needle was inserted in the 

guide tube prior to beginning the experiment.  A pre-injection period of 40 trials (or 50 trials 

in Experiment #2) was presented to rule out needle insertion effects and to assess baseline 

eyeblink performance.  Following the pre-injection period, drug micro-injections were 

manually administered at a rate of 0.5 µL/min.  To assess the drug effect, training continued 

for 60-150 additional trials.   

The present study had two objectives.  In the first group of rabbits (n = 6), CR 

performance was examined following injection of two GABA antagonists, picrotoxin (PTX, 

chloride channel blocker; Sigma-Aldrich, USA) and gabazine (GZ, GABAA receptor 

antagonist; Ascent Scientific, Weston-super-Mare, UK).  Of the 6 animals, 3 were used in the 

PTX group and 3 were used in the GZ group.  In preliminary experiments we found that 

effects of both drugs were dose-dependent besides being animal and injection site-dependent.  

For this reason, effective injection sites and drug doses in each animal were determined.  The 

starting doses for PTX and GZ were 0.62 nmol and 0.51 nmol, respectively.  If CRs were 

abolished after the injection, this drug concentration was considered the ‘high-dose,’ and the 
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drug dose was progressively decreased on consecutive days until SLRs were observed (the 

‘low-dose’ for the drug) or until no drug effect was detected.  If no effect on CR performance 

was found following the initial drug injection, the drug dose was progressively increased 

until SLRs (the ‘low-dose’) and CR abolition (the ‘high-dose’) were detected.  Only one drug 

was injected on any given experimentation day.  Both GZ and PTX were dissolved in 

artificial cerebrospinal fluid and their pH was adjusted to 7.4 ± 0.1.  All injections of PTX 

and GZ were performed at CR expression-related deep cerebellar nuclear sites where 0.5 µL 

of muscimol (1.75 nmol) completely suppressed conditioned eyeblinks (Bracha et al., 1994). 

In the second group of animals (n = 4), the parallel effects of PTX on CR and UR 

expression were examined (Experiment #2).  In this group of rabbits, PTX was injected in 

0.5-µL (0.3 nmol) increments beginning immediately following 50 pre-injection trials.  

These injections were administered every 20 trials until SLRs were observed or until 2.5 µL 

of PTX had been cumulatively administered.  In control experiments for both Experiment #1 

and Experiment #2, an equal volume of drug vehicle (aCSF) was injected using the same 

injection protocol.   

7.5.5 Data recording and analysis 

Rabbit behavior was monitored using an infrared video system installed in the 

experiment chamber.  Eyelid movements were recorded by a frequency-modulated infrared 

sensor that measures infrared light reflected from the eye and peri-orbital region (Ryan et al., 

2006).  The sensor, attached to an aluminum stage, was secured to the Delrin block on the 

rabbit’s head before every experiment.  The output of the sensor was amplified, digitized (25 

kHz, 12-bit A/D converter), and stored in a PC-based data acquisition system.  During each 



www.manaraa.com

168 

 

  

 

trial, 1400 ms of the signal was recorded, beginning with 250 ms of baseline before the CS 

onset and extending for 800 ms beyond the US onset.    

Eyeblink responses from each trial were examined off-line for the presence of CRs 

within the time window between CS and US onsets and for the presence of URs in US-alone 

trials.  The threshold for eyeblink detection was set to 5 standard deviations of the baseline 

signal noise, which in the present setup corresponded to an approximately 0.15 mm decrease 

in eyelid aperture.  The following response parameters were measured in each trial: baseline 

eyelid aperture, response latency, response amplitude and response peak.  Response 

amplitude was defined as the difference between the baseline eyelid aperture and the 

maximum eyelid closure in the corresponding response time window for each trial.  

Response peak was calculated as the difference between the experiment-wide maximum 

eyelid aperture (openness) within every injection experiment (the signal value corresponding 

to completely open eyelids) and the maximum eyelid closure in the corresponding response 

time window for each trial.  All amplitudes were first measured in A/D units of the recording 

system.  Typical eyeblinks in rabbits consist of eyelid closure and subsequent folding of 

external eyelids.  Both of these response components were detected by our IR sensor (Ryan 

et al., 2006).  The native amplitude measurements were normalized by converting them to a 

percentage of maximum eyeblink, assuming that the difference between minimum and 

maximum sensor signals in a particular experiment captures the eye both maximally open 

and closed.  Means of eyeblink measures were calculated for consecutive blocks of 10 trials 

in Experiment #1.  In Experiment #2, means of eyeblink measures were calculated for blocks 

of trials as follows: 20 paired CS + US, 10 light, 10 weak airpuff, and 10 strong airpuff trials, 
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which were all randomly presented during blocks of 50 trials.  In addition, instantaneous 

velocities were calculated in a sliding window of 20 msec as the first derivative of rise-to-

peak velocities of URs to light and to the strong airpuff in Experiment #2.  To compare time 

profiles of URs to the light and strong airpuff, response averages were normalized by 

expressing them as a percentage of their amplitude.  We tested unique hypotheses about dose 

dependence by conducting separate repeated measures ANOVAs for PTX and GZ at each 

dose (high concentration: abolition-inducing, and low concentration: SLR-inducing).  

Response variables, divided into blocks of 20 trials as the within-subject repeated measures, 

were modeled against a two-factor treatment (drug vs vehicle) together with subject as a 

blocking factor.  Reported F-ratios and their p-values refer to main effects only when there 

was no significant interaction between treatment and blocks-of-trials.  All group data were 

reported as mean ± standard error of mean, and significance was declared by an alpha level = 

0.05.  All statistical analyses were performed using Statsoft Statistica software.    

7.5.6 Histology 

Upon the conclusion of experimentation, rabbits were deeply anesthetized with a 

cocktail of ketamine (100 mg/kg), xylazine (12 mg/kg), and acepromazine (3 mg/kg).  

Injection sites were marked by injecting 1 µL of tissue-marking dye.  Animals were perfused 

transcardially with 1 L of a phosphate-buffered saline followed by 1 L of a tissue fixative (10 

% buffered formalin).  Carefully excised brains were stored in a solution of 30 % sucrose and 

10 % formalin and subsequently sectioned coronally at 50 µm on a freezing microtome.  The 

sections were mounted onto gelatin-coated slides, and once dry, stained with luxol blue and 
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neutral red.  Using bright light microscopy, injection locations were determined and plotted 

on standard sections of the rabbit cerebellum. 
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CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTIONS 

8.1 Study conclusions 

 The research described in this dissertation addressed the fundamental question of the 

neurophysiological substrates of motor learning using a popular model of classical eyeblink 

conditioning.  Conceptually, we approached this subject using our concept that views the 

eyeblink conditioning circuits as a recurrent neuronal network in which spontaneous activity-

mediated tonic interactions play an important role in setting the network’s optimal functional 

state (see Chapter 5).  

Our research focused first on analyzing the role of GABA-ergic projections in the IN 

on the expression of conditioned and unconditioned eyeblinks because previous studies that 

blocked these cortical projections generated controversial results.  We discovered that this 

intervention is drug dose-dependent and thus ascribable to the level of tonic activation of 

neurons in the IN (Chapter 7).  Our work in this area has been widely recognized and we 

were invited to contribute to the international consensus paper on the function of the IN 

(Chapter 6).  

The second and most important part of this dissertation research focused on one of the 

main tenets of the cerebellar learning hypothesis – on the role of the inferior olive in the 

acquisition of conditioned eyeblinks.  We made major progress in addressing this issue.  First 

of all, we developed a new conditioning paradigm that utilizes a vibrissal stimulation CS and 

produces learning that is significantly faster than that attained using more traditional CS 

modalities (Chapter 2).  Because this paradigm offers unique advantages in acquisition 

studies that interfere with the operation of eyeblink networks by microinjecting drugs, we 
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used it our main experiment.  In our main experiments we examined the role of IO teaching 

signals in learning by blocking them with a glutamate antagonist during vCS acquisition.  We 

discovered that contrary to predictions of the cerebellar learning hypothesis, injecting CR-

abolishing and presumably US-blocking doses of a glutamate antagonist in the IO did not 

prevent learning.  This indicates that the putative cerebellar learning mechanism is extremely 

robust because it can withstand the IO manipulation-induced changes of spontaneous firing 

in the cerebellar cortex and nuclei.  More importantly, perhaps in this mechanism the mossy 

fiber information about both the US and CS is sufficient to induce learning.  We expect that 

our finding will have a major impact on concepts explaining the mechanisms of eyeblink 

conditioning.   

As outlined in Chapter 3, the possible role of the IO in eyeblink conditioning has not 

been resolved completely.  Future electrophysiological studies are required to confirm or to 

disprove our conclusions.  Recognizing this situation, we initiated preliminary experiments to 

address this problem (Chapter 4).  In this pilot study, we developed a single-unit recording 

system suitable for isolating and holding single unit Purkinje cell activity for the full duration 

of an injection experiment involving an IO glutamate antagonist.  Data acquired thus far 

indicate that CR-abolishing doses of DGG administered to the IO indeed block IO signals.  In 

the future, this study will have to be expanded to collect a representative sample of Purkinje 

cells from cortical eyeblink microzones and also to examine the time profile of the IO signal 

block.  

Another logical implication of this research for future studies is the question of CS 

specificity.  Could it be that our conclusions are limited to the acquisition of vCS-evoked 
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CRs?  This question should be addressed in studies that will block glutamate-mediated IO 

signals in animals being conditioned to other CS modalities.  

Depending on the outcome of these two groups of future studies, we envision two 

scenarios.  It is possible that our finding will be further substantiated and that the 

hypothetical role of IO teaching signals will be falsified.  In this case, future studies will have 

to focus on explaining how the mossy fiber CS and US signals contribute to learning.  On the 

other hand, we cannot exclude that it will be found that our results are attributable to an 

incomplete block of IO signals.  In that case, future studies will have to focus on devising a 

better approach to completely blocking IO task-related signals while simultaneously not 

perturbing the functional state of eyeblink networks. 
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